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Abstract

Derivative-free optimization (DFO) is an alternative to traditional, gradient-based,
approaches and to more recent reinforcement learning (RL) methods. Especially
suitable for black-box scenarios or when optimizing a non-differentiable function,
it is interesting to measure the usefulness of DFO for problems habitually tackled

with backpropagation.

One such class of problems, called sequence-to-sequence (seq2seq), is a staple in
the natural language processing (NLP) field, unifying tasks like machine transla-

tion, text summarization and speech recognition.

In this bachelor’s thesis, I implement DFO from scratch and attempt to solve three
simple sequence-to-sequence tasks represented by JoeyNMT models. I find that
the simplicity of DFO allows highly configurable implementations, and describe
my approach to implementing DFO for seq2seq in detail. In the application phase
I experiment with hyperparamers, gradient estimation strategies and optimizers

in order to study their effect on the training process.

My results show that estimating the gradient with symmetric function evaluations
leads to stable improvement in validation set rewards, contrary to other gradient
estimation techniques. Furthermore, I find that the choice of smoothing parameter
is highly relevant to the success of training. Although two promising algorithmic
enhancements led to a decrease in performance for the three tasks, using the AbAM
optimizer to compute the update step yielded a small improvement in validation re-
wards over the simple SGD optimizer. Using pre-trained embeddings under ADAM
proved to be beneficial as well. Unfortunately, my attempt to efficiently parallelize
the algorithm proved unsuccessful, greatly limiting this method’s applicability in
practice. Finally, I propose some interesting directions for further research and

experiments.



Pe3rome

MHOTO OT IPUIOKEHMSITA HA €CTeCTBEHATA €3UKOBa 00pabOTKa IIPerojarar pa-
6oTa ¢ PN - PEIUIH OT LyMU (TEKCT ), PEJIUIN OT 3BYIHU (ped) U JOPU PEHIA OT
n3obpazkenus (Bumeo). [Ipobsremu, Kouto nmpeobpazyBaT PeUIy B JAPYTH PEIUAIN
ce HApUYIAT sequence-to-sequence pobsemu. B nHeIHO BpeMe moBevueTo mpodeMn
OT TO3U KJac OMBAT pas3pelreHu 1o ciaeanns Hadut. [IbpBo, cucremara, nim Mojie-
JIBT, IIPOYNTA BXOAHATA peaulia U Ha Oa3arTa Ha Hes TIpeapuda’ M3XOJHATA PEJIHIA.
T4 or cBost cTpana OuBa cpaBHEHA C UCTUHCKATA M3XO/IHA PEJIUIlA, U I'perrKkaTa Ou-
Ba u3MepeHa. Ilo MeToabT 3a 00paTHO pasmpocTpaHeHne Ha I'PEIIKaTa, OCHOBAH Ha,
JaCTUYHM IIPOU3BOMHU, ITapaMeTpuTe Ha MOIE/JbT OMBAT OOHOBEHH, TaKa de IIPHU
cJIeBAIIO U3BUKBAaHE HA MOIE/IBT ChC ChINATa BXOIHA PEIUIIA N3MepeHaTa IPeIKa,

18, € IO-MAaJIKa.

B 6akamasbpckaTa cu paboTa nMpoydnx Jaju sequence-to-sequence mpobsiemure
Morar ja ObJIaT paspenieHn Ipe3 aJIfOPUTbM 38 OIMITUMUBAIS, KONTO He U3MOI3BaA
npousBognu (derivative-free, DF). TakbB MeTOJ1 € OT TOJI3a KOraTo Ipekara (1
HarpaJjara) He e audepeHnupyeMa, Uik KOraTo MOJIE'bT € YepHA KyTHsl - TOeCT,
KOraTo HsaMaMe nHdOpMaIns 3a TOBa KakK € mpecMeTHaTa rpemkara. Onenkara Ha
U3XOJHUTE PEeIUIU TP MAIIMHHUS TPEBOJ, € IpuMep 3a ToBa. Haii-yecTo ce n3no-
sar BLEU Toukure (HauuH 3a OlEHKA HA KAYECTBOTO Ha [IPEBOJA YPe3 U3MepBaHe
HAa TIPUTIOKPUBAHETO MEKJIy TPepevdeHaTa U UCTUHCKATA U3XOHU PEJIUIIN ), KOUTO

He ca JTudEePEeHIuPyEeMU.

Nmmnemerntrpax DF agropurbMm 3a onTtumusaiids OT HyJia, U IIPOBEIOX €KCIIe-
PHUMEHTH, 33 Ja PeIa Ipe3 Hero TP IPOCTH sequence-to-sequence mpobdieMa. Bbii-
PEKH CMECEHUTE Pe3yJITaTh OTKPHUX, Y€ CHUMETPUIHUsS €CTUMATOP Ha IPAJINEHTa €
Hal-TIOAXOIAIN 32 3aJa9aTa, U Ye ¢ IpaBUIeH U300p Ha CTHbIKATA Ha aJlOPUTHMA
MoraT Ja ObJaT MOCTUTHATHU OIle MHo-100pu pesyararu. CbINo M3MOJI3BaHETO HA
[IPEABAPUTEIHO ONTUMUIAPAHKN PEIpPEe3eHTaIllnN JOHEece MOA00peHne BbB (DUHAJI-
HUS Pe3yJTaT. 3a ChyKaJeHHe OMUTHT MU J1a IPUJI0XKa e(heKTUBHA IMapasIe IU3aIisT
BbpXY IpoIieca Oelre HeyCIeleH, KOeTO MONPeYn Ha METOIbT Jia ce KOHKYpHUpa C
TPAJUIIMOHHNATE METOJIM 3a ONTHUMH3alud 4upe3 rpajueHtu. Hakpasi, obobiaBam
OTKPUTHUSTA CU U TPeJJIaraM HSIKOJKO Bb3MOXKHOCTH 3a Pa3BUTHE Ha METOJIa 34

pas3peraBaHeTo Ha TO3W THII IPOOJIEMHU.



1 Introduction

Many problems in the field of natural language processing (NLP) can be reduced
to the transformation of a sequence to another sequence. These problems are
called sequence-to-sequence problems, where the sequence can be any temporally
dependent set of objects, for example a text, a video, a time series, an audio file.
Examples of sequence-to-sequence problems include speech recognition, machine

translation, question answering, image captioning.

Deep feed-forward neural networks can solve such problems only if the input and

output sequences are of fixed lengths, which greatly limits their use in practice.

Sequence-to-sequence (seq2seq) models (Sutskever et al), 2014; Cho et al., 2014)

were developed to overcome this limitation. In their most basic form, seq2seq
models are deep learning models based on recurrent neural networks (RNNs).
The simplest model architecture consists of an encoder-RNN which learns a single
vector representation of the input sequence (see vector ¢, Figure El), and a decoder-
RNN which transforms that representation to an output sequence, generating one
token at a time. Training such models usually consists in maximizing the likeli-
hood of the input, also called maximum likelihood estimation (MLE). In practice,
seq2seq models are largely optimized by calculating the gradient of a differen-
tiable error function called a loss function, and using that gradient to update the

model parameters, for instance with gradient descent.
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Figure 1: Encoder-Decoder model for Machine Translation. Source: Chris Dyer, "Modeling
Sequential Data with Recurrent Networks” http://1xmls.it.pt/2016/1xmls-d12.pdf


http://lxmls.it.pt/2016/lxmls-dl2.pdf

Quite often, the cross-entropy loss is used, which measures the error between
prediction and desired output one token at a time, and averages these errors to

obtain the full sequence error.

In many cases, however, the loss function is distinct from the metric we use to
evaluate how good a trained model is. For instance, in machine translation (MT)
we might not necessarily need to generate the exact translation reference in order
to produce a good translation of an input sequence. Instead, we want a certain
amount of overlap between the model’s prediction and the reference translation(s).
One such overlap measure is the BLEU-score (Papineni et al., 2002), which is even

today the de facto standard for evaluating MT.

The question arises of whether we can use the actual evaluation metric (e.g. the
BLEU-score) to train a model, without using another function as a proxy. However,
since the BLEU-score and related metrics are non-differentiable, we cannot easily
use gradient-based methods like backpropagation for training the model. In fact,
we might need to view the entire model as a black box — as if only the final output

score is visible.

Such approaches, called black-box, or derivative-free, optimization (DFO), have
recently been used to solve continuous robotic control problems simulated in Mu-
JoCol (Todorov et al), 2012), for example learning bipedal walking. This difficult
set of problems were previously only solvable with reinforcement learning (RL)
methods, but in recent years derivative-free optimization techniques have man-
aged to provide ‘a scalable alternative to reinforcement learning’ (Salimans et al,,
2017), as well as ‘a competitive approach to reinforcement learning’ (Mania et alJ,
2018). However, the suitability of DFO for other types of problems, especially
those easily solved with gradient information, is questionable. A well-known dis-
advantage of most DF methods is that their convergence speed scales with the
(effective) dimensionality of the function they optimize (Nesterov and Spokoiny,
2017; Sokolov et al), 2018; Wang et al), 2016). This limitation is often a bottleneck
when it comes to using such methods in practice. Nevertheless, interest in DFO
has been rising in the last decade (Larson et al, 2019, Figure 1.1.), with numer-
ous strategies for overcoming this limitation, owing to these methods’ simplicity,

parallelizability, and suitability when only function evaluations are available.

In this thesis, I apply DFO to three simple seq2seq tasks to study the suitability

of DF methods for solving this class of problems. My objectives are as follows:

Thttps://gym.openai.com/envs/#mujoco
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1. [mplementation

e Implement derivative-free optimization from scratch, based on the pseu-
docode and insights of recent DFO papers (Salimans et al), 2017; Mania
et al), 2018). Apart from the basic algorithm, optional algorithmic en-
hancements should be available and configurable, for example paralleliza-

tion, custom model initialization and update strategies.

e Provide detailed documentation.

2. [Application

e Using model architectures provided by JoeyNMT B (Kreutzer et all, 2019),
a framework for neural machine translation, apply DFO to three simple
seq2seq problems, namely copy, reverse, and sort. Focus on the train-

ing process and how different scenarios and hyperparameters affect it.

In the next section I summarize the findings of several papers on DFO, which
serve as the core references for this thesis. In addition, while the training of
seq2seq models with DF methods remains (to my knowledge) unexplored, there
are similarities to reinforcement learning (RL) approaches. For this reason, the

next section also contains a summary of applying RL to seq2seq learning tasks.

2https://github.com/joeynmt/joeynmt


https://github.com/joeynmt/joeynmt

2 Related work

I use two papers as the core papers for this thesis. The work of Salimans et al.
(2017) proposes an evolutionary algorithm called Evolution Strategies (ES) as an
alternative to RL on the MuJoCo tasks. Evolutionary algorithms model their
methods on biological evolution, solving a given optimization problem by generat-
ing a 'population’ of candidate solutions (‘'mutations’), evaluating their ’fitness’,
and selecting the ’fittest’ individuals for ’reproduction’. In practice, Salimans
et al)’s ES optimizes the parameters 6 of a neural network by generating and
evaluating a population of candidates éi, where the candidates are Gaussian noise
perturbations of the original 6. ES is found to have several advantages to RL on
the MuJoCo tasks, as well as being highly parallelizable, solving the Humanoid?
task in 10 minutes on 1440 CPUs. Mania et al| (2018) respond to ES with a sim-
ple random search algorithm that uses linear models to achieve results better than
or comparable to ES on the MuJoCo tasks. The authors report 15 times higher

computational efficiency than ES, necessitating a lower degree of parallelization.

In the literature, DF methods are often compared to RL benchmarks, which is
why a comparison to seq2seq RL is important. An excellent summary of deep
RL approaches and their application to improving seq2seq learning is given in
Keneshloo et al, (2019). RL has been used for seq2seq problems as an attempt
to bridge the discrepancy of model behaviour at train and test time (see exposure
bias, Ranzato et al., 2015). Rather that training seq2seq models from scratch,
however, RL approaches are used for fine-tuning the performance of traditionally
trained models, owing to the fact that RL training is time consuming (Keneshloo
et all, 2019). For example, RL can be applied to a pre-trained model, or RL
rewards can be incorporated into the standard cross-entropy loss and scheduled
to become more important in the course of training. Keneshloo et al) (2019) also

give a summary of RL-based seq2seq applications in their Table IV.

Further related works deal with orthogonality of the exploration (Choromanski
et all, 2018), exploiting sparsity patterns to reduce the number of perturbed di-
mensions (Sokolov et al), 2018), and DFO in high dimensions when the underlying
problem dimensionality is low (Wang et al), 2016; Qian et al), 2016).

3https://gym.openai.com/envs/Humanoid-v2/
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3 Derivative-free optimization

Derivative-free optimization has many names in the literature - gradient-free,
zeroth-order, and black box optimization are some of them. The definition of
DFO often depends on the problem one wants to solve and the particular DF
method used. In the next pages, I detail the definition used in Choromanski et al.

(2018), and explain it in the context of seq2seq models.

3.1 Problem Statement

We define the following maximization problem objective:

max f(0), where f(0) :=E, [F(x,0)] (1)

6 € R? are the model parameters, e.g. the weights of a neural network, F is a
reward function parametrized by 6 and evaluated at point x, and E, corresponds
to the expectation, or mean, of the rewards of all training instances z € X B As
such, the objective f : R — R aims to find § that maximizes the expected total
reward of X w.r.t. 6. One could then search for the optimal 6 with gradient

methods, for example stochastic gradient ascent:

where « is the step size, or learning rate. However, in some cases the gradient of
f is not available, either because of non-smootheness at point x, or because only
function evaluations are available. In such cases, we can smoothe the objective ([l])
using Gaussian smoothing, as suggested in Nesterov and Spokoiny (2017). The

smoothed version f, of f, also called the Gaussian approximation, is defined as:

fo(0) = Ec[f(0 + o€)] (3)

o € R, is a smoothing parameter, and ¢ ~ A(0,) is an n-dimensional Gaus-
sian random vector, i.e. Gaussian noise. The approximation of f is obtained
by evaluating perturbations 6 + o¢; at a given point x and then averaging the

noisy evaluations. Nesterov and Spokoiny (2017) further prove that the distance

4In practice, f(0) is calculated with m samples € X, and corresponds for instance to the total reward of a minibatch.



||V f,(0) =V f(0)|| can be bounded for every 6 (see their Lemma 3). It is therefore

feasible that any solution to the maximization problem

mas /,(0) @

would be a solution of similar quality to the original problem @) Since f, is

smooth everywhere, we can define its gradient with respect to 6:

Volo(6) = ZE.[F(6+ 06} 9

3.2 Gradient Estimators

A direct computation of the gradient (f]) is intractible. Choromanski et all (2018)

introduce three gradient estimators for Vy f,(6), with ES in mind.

Vanilla gradient estimator

1 N

@fa(Q) = N_UZf(9+UEi)€i (6)

In ES terms, N is the population size, and (e)¥., ~ N(0, ) the perturbations used
to create the candidates 6 + o¢; in the population. I prefer the term exploration
directions (e.g. ¢; is one exploration direction), because it contributes to the un-
derstanding of the approach - the algorithm explores in different directions from

the current 6 in search of better return.

Forward finite difference (FD) gradient estimator
[N
Viol0) = 5 ;me + o) = f(0))e; (7)
Here, f(0) acts as a baseline and is subtracted from f(6 + o¢). As we want to
maximize f,(0), it stands to reason that f(6) grows during training, so the norm
of the gradients produced by the vanilla gradient estimator will automatically grow
as well. Instead, the forward FD estimator focuses only on improvement over the

current parameters.



Antithetic gradient estimator

V1o(0) = = Y0+ 0) = (0 - o)) ®

This estimator evaluates both ¢; and —¢; in order to promote or discard the ex-
ploration direction ¢;. If the antithetical directions lead to a similar reward, their
contribution to the gradient is close to 0. Conversely, if for instance f(0 + oe€) >
f(0—o¢), the negative perturbation acts as a baseline similar to f() in the forward
FD estimator. Sehnke et al] (2010) state that employing symmetric exploration
directions in the estimation is much more robust than simply using a baseline.
Nevertheless, it is important to note that this gradient estimator incurs twice
the number of function evaluations as the other two, which presents a problem if

function evaluations are expensive.

Although these are the definitions provided by Choromanski et al) (2018), many
modifications are possible when information about the problem itself is available.
For instance, Mania et al, (2018) scale the antithetic gradient estimator by the
standard deviation of the collected rewards, instead of by the smoothing parameter

g.



4 Implementation

While several different relatively recent Python implementations of DFO exist (e.g.
E,E), applying them directly to the task of seq2seq learning would have necessi-
tated a significant amount of modifications to the code itself. For example, there
are several tensorflow implementations, but the underlying deep learning frame-
work of JoeyNMT is PyTorch. Another problem is that these implementations
are tailored specifically to MuJoCo environments and, perhaps most importantly,

usually sparsely documented.

For these reasons, I decided to implement DFO from scratch, drawing inspiration
from different papers and implementations. My main goal was producing read-
able, well-documented, easily configurable code to tackle the problem of DFO for

seg2seq problems. Both code and documentation are publicly available

In its core, my implementation follows closely the pseudocode of Augmented Ran-
dom Search (ARS) (Mania et al), 2018). Despite the fact that Mania et al. use
ARS to train only linear models, ARS has a few important advantages compared

to Salimans et al’s ES.

First, it does not rely only on efficient parallelization, which is strongly depen-
dent on available hardware, and often difficult to implement. Secondly, ARS is
less complex and computationally expensive than ES: it does not require virtual
batch normalization or fitness shaping (Salimans et alj, 2017, Section 2). A very
basic pseudocode is given in Algorithm E], with optional steps in square brackets.

Relevant implementation details are given for each line of the algorithm:

e Training configuration. JoeyNMT models are built on the basis of YAML
configuration files. They describe the datasets used for training, testing and
development, the model configuration, and the (backpropagation) training
process. While some of the training settings are relevant for DFO (e.g. batch
size, learning rate, evaluation metric), many are redundant. I extend the con-
figuration file to include some DFO-specific hyperparameters like the smooth-
ing parameter o, the number of exploration directions to evaluate (i.e. the
population size), as well as the maximum number of workers to use. An

example configuration file is available in the repository as well.

Shttps://github.com/openai/evolution-strategies-starter/blob/master/
Shttps://github.com/sourcecode369/Augmented-Random-Search-
"https://gitlab.cl.uni-heidelberg.de/dimitrova/dfoseq2seq
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Algorithm 1 Basic DFO Algorithm

1:

2:

3:

4:

5:

Input: Model M, smoothing parameter o, (starting) learning rate «, num.

exploration directions N

Initialize M with parameters ¢
for k:=0 ... K do > K iterations

Sample minibatch x

N

Generate exploration directions ()2,

for j:=0 ... N do
Collect rewards f(x,0 + o¢;) [and f(z,0 — o¢;)]

Estimate V f(z,6) using the collected rewards
Update 6 = 0 + () V f(z, 0)

e Line 1: Model initialization The model can be (1) randomly initialized

with parameters drawn from a distribution given in the configuration file, (2)
initialized from a checkpoint, the path to which is given in the configuration
file. The checkpoint can be either a backpropagation checkpoint, or a DFO
checkpoint. An additional checkpoint can be given for initializing the embed-
dings only, i.e. with pre-trained embeddings, which is a common and useful

practice in real NLP applications.

Line 3: Minibatching. Mania et al. suggest using minibatches to reduce
the variance of the gradient estimate. Of course, an optimal case would be
to ’'see’ the entire training set during each iteration. However, evaluating
the entire training set multiple times (as many as the number of exploration
directions) is impractical. Instead, one DFO training iteration updates the
parameters on the basis of a single minibatch. Iterating over minibatches is
implemented with torchtext, the default batch size set to 256.

Line 4: Noise generation. Both Choromanski et al| (2018) and Salimans
et al) (2017) solve the problem of random exploration directions by generating
one large noise matrix, with size n X n where n is the number of exploration
directions. In order to reduce the amount of memory necessary, I generate
sets of random perturbations on the go. Furthermore, Choromanski et al,
(2018) propose Gaussian orthogonal exploration, i.e. ensuring that all the
exploration directions are orthogonal. Practically, this involves a transforma-
tion of the original Gaussian matrix, which proved to be intractable in my

experiments. Again, Choromanski et al. (2018) train linear models with much



fewer parameters. Even so, the orthogonalization of the random explorations

directions is also possible with my implementation.

e Line 6: Reward functions. There are four seq2seq evaluation metrics
shipped with JoeyNMT:

— BLEU (Papineni et al), 2002): originally developed for evaluation of ma-
chine translation, BLEU is based on modified n-gram precision; de facto
standard in the field.

— chrF (Popovid, 2015): character n-gram F-score.

— Token accuracy: Percentage of tokens in the hypothesis that are in the

same position in the reference.

— Sequence accuracy: Percentage of correct sequences (e.g. sentences).

Correct means equal to the corresponding reference.

All of these metrics are available as reward functions for DFO, although in
experiments the BLEU reward was comparatively easier to learn from. BLEU
has been further been used as a reward function in RL approaches to seq2seq
learning (e.g. Ranzato et al, 2015). Implementation-wise, the reward function
is separate from the DF training process, and bound to it after initialization.
This design decision makes it possible to re-write or change the reward func-

tion without worrying about how the DFO is implemented.

e Lines 5-6: Parallelization. I implemented two types of optional paral-
lelization, omitting them from Algorithm [ﬂ for the sake of readability. The
first approach is similar to the parallelization technique employed by Salimans
et al] (2017). In their paper, every worker evaluates N different perturbed
parameters, resulting in an ’inflated” number of exploration directions ¢;: Nw,
where w is the number of workers. Consequently, the number of iterations
is reduced to K /w. The second parallelization technique retains the orig-
inal number of exploration directions N and iterations K, but parallelizes
the reward function evaluations in Line 6. In early experiments, both strate-
gies proved difficult for optimizing a JoeyNMT seq2seq model, mostly due
to hardware limitations, e.g. available memory, number of cores. I explore
whether parallelization is a viable alternative to the single-worker case in the

next section.

e Line 7: Gradient Estimation. The choice of gradient estimator is left to
the user. Default is the central differences (antithetic) estimator, but gra-

dient estimation via the vanilla estimator or via forward finite differences is

10



available. In practice the weighted sums in formulas (f), (), () can be com-
puted with a matrix-vector product. For instance, for the vanilla gradient
estimator, we can collect all rewards in a single vector r € RY with entries
r(€;) = f(0+0€;), and view the explorations directions as a matrix £ € RV*4,

where every row vector corresponds to a single exploration direction e;:

Talzz[r(ei) r(ez) ... r(ey)| and E =

We can then calculate the product r,; - £ € R?, which equals the weighted
sum used in the vanilla gradient estimator. T use ¢;[d] to access the d" entry

of exploration direction ;.

r(eefl] r(er)er]2 r(e1)erld
ol - E = + 7’(62)62[1] + T(62>62[2] + T(EQ)EQ[CZ]
+ ¥ +
+ T’(EN)GN[l] + T'(EN)EN[Q] + 7”<€N)6N[d]
( |:7“(€1)€1[1] r(e1)er[2] T(el)el[d]] ( r(e1)er
. el r(e)ol reeld)| L) e
[rlemenlt]  rlement2l o rlew)eld] | (en)en
= iNlr(ei)ei = Zévjlf(ﬁ + 0€;)€; O

Following the approach of Mania et al, (2018), my implementation also allows
for using only the top performing exploration directions for the gradient esti-
mate, as well as optionally scaling by the standard deviation of the rewards

instead of by o.

e Line 8: Step size s(a). An initial learning rate must be given in the
configuration file. The update step size (i.e. how much of the estimated

gradient is used to update #) can be computed by one of three optimizers,

11



chosen in the configuration file. The current possibilities are simple SGD
with a fixed decay rate < 1, SGD with momentum, and Adam. I implement
Momentum SGD and Adam similarly to the ES implementationg, but adapted
for PyTorch, and extended with the simple SGD optimizer with decay. Since
all of these optimizers move 6 in the opposite direction of the gradient (i.e.

minimization), they receive as input the negative of the estimated gradient.

Model outputs and output files. Logging the training process is essential
if we want to analyse it. Every model saves its output files to a directory
specified in the configuration file. Another logging parameter is the validation
frequency. How often a model checkpoint is saved is dictated by the validation
frequency and a variable keeping track of the current highest validation set
reward. A checkpoint is saved only if a higher validation set reward was
achieved, and takes note of the model parameters and the current state of
the optimizer so continuing training from a DFO checkpoint is possible. All
console outputs are saved in a .txt file in the output directory, which apart
from measured rewards, includes a copy of the configuration file for reference
purposes. The output files of training include a list of all parameters 6 over
time, the gradients computed and update steps taken at every iteration, as

well as a list of the validation rewards.

Shttps://github.com/openai/evolution-strategies-starter/blob/master/es_distributed/optimizers.py

12
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5 Application

In this section, I apply my DFO implementation to three simple seq2seq tasks,
namely copy, sort and reverse. I study the training process and note which
scenarios and hyperparameter settings result in improvement in validation reward,

training times and stability. All plots were drawn with matplotlib (Hunter, 2007).

5.1 Tasks and Data Generation

Algorithmic tasks like copy, sort and reverse have been used for evaluating novel
(gradient-based) approaches to seq2seq problems (Dehghani et al), 2018; Kaiser
and Sutskevern, 2015). Despite their simplicity, I focus on these tasks for two
reasons. First, solving e.g. reverse with backpropagation requires an encoder-
decoder model with attention with more than 30000 parameters. This dimen-
sionality is more than enough to present a challenge for DFO and to test the
algorithmic enhancements proposed in the literature. Secondly, a comprehensive
study of DFO for copy, sort and reverse can serve as a stepping stone to apply-
ing DF methods to difficult problems like machine translation, either because of

successful experiments or due to lessons learned.

Table E] defines the input and output sequences of each of the tasks. Generating
the train, validation, and test sets was done with JoeyNMT, using the default
settings:

e Size: 50000 examples for training, 1000 for testing and validation each.

e Maximum sequence length: 25 for the training set, 30 for the validation

and test sets.

e Vocabulary: The natural numbers in the range [0, 50].

Task Input Output
co The same
i sequence.
Sequence of tokens The sorted input
sort (e.g. numbers). sequence.
reverse The input sequence
in reverse order.

Table 1: Input and output sequences for three algorithmic seq2seq tasks.
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5.2 Experiments

One of the aims of this thesis was implementing a highly configurable DFO frame-
work. Because of this, there are numerous possible configurations to choose from.
I focus on the following experiments for several reasons. First, I avoid complexity
without reason, and always test the simplest alternative first, for example pure
SGD is tested before SGD with momentum. Secondly, I concentrate on configu-
rations used in the core reference papers, since they performed well, though on a

different type of task.

For the experiments, the main model architecture is fixed, and the same for all
three tasks. The JoeyNMT model consists of a single-layer bidirectional LSTM en-
coder with 32 hidden units, Luong attention (Luong et al., 2015), and a single-layer
LSTM decoder. Although the configuration file includes a small dropout, DFO
training is based on function evaluations, so dropout is disabled before training.
The number of model parameters (weights + biases) is 31904. References to ‘the

model’ pertain to this model.

Pre-training with cross-entropy Applying DFO to a randomly initialized model
predictably resulted in an inability to move past a zero reward. For this reason,
I trained a model for each of the tasks using the configuration above. The model
is optimized through backpropagation of the cross-entropy loss. During training,
checkpoints of the models were saved every 200-500 iterations if there was an im-
provement in the validation set BLEU-score. A final score of 90-95 BLEU on the
validation sets was reached for all tasks. Of the three, sort proved to be the
most difficult to solve with backpropagation of the cross-entropy loss. On average,
the same model needed twice as many iterations to reach a certain validation set
BLEU on the sort task compared to copy and reverse. Still, training times were

negligible.

5.2.1 Choice of smoothing parameter

First, I run the simplest possible set of experiments in order to judge how, and
whether, the choice of o affects learning. I consider the values [0.01, 0.05, 0.1].
In most implementations, the default value of o is set to 0.1. For each task, I
start DFO from a pre-trained model with validation set reward of 35.2 BLEU for
the copy task, 29.6 for the reverse task, and 33.1 for the sort task. The models

were trained for 500 iterations, so that every training example was seen 2-3 times.
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Figure 2: copy, reverse and sort with constant o. 450 iterations, single worker, minibatch size
256, 50 exploration directions and constant learning rate o = 0.001.

On average, the training process itself (without time needed for initialization and
saving outputs) took 1.5 hours on GPU. While training longer achieved higher re-
wards, my aim is not obtaining perfect reward, but exploring what can be learned
by a DFO model in a reasonable amount of time. I measure rewards on the valida-
tion set only once every 50 iterations. Training rewards are not available because
the model evaluates only the perturbed parameters, not 6 itself. Figure E shows
the validation set reward at different iterations for the first set of experiments.
The results were averaged over three runs with different random seeds for this and

all other experiments.

Rather surprisingly, only the models with o = 0.05 and antithetic gradient estima-
tion achieved any improvement over the starting point. An important observation
is that, with few exceptions, the first fifty iterations are the most important to the

overall success of training. This is especially true for the vanilla gradient estimator
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(Figures P, Bld, Plg), whose performance decreases the smaller o is set.

The disappointing results of the forward FD gradient estimator (Figures Eb, Ee,
Bh) are mostly likely due to the fact that candidates 6 + oe of better quality than
the original 6 were rarely produced. Without the stabilising antithetic exploration
direction, f(6 + o¢) — f(0) was usually negative, causing the forward FD gradient
estimator to consistently propose steps in the negative direction —e. Contrary
to the vanilla approach, here small ¢ values were better, i.e., caused a less steep

decrease of validation set reward.

Finally, the antithetic gradient estimator (Figures P, Pf, Bi) with o = 0.05 achieved

an improvement of the validation set reward of 5-10 BLEU for all three tasks.

For the rest of this thesis, I refer to these experiments as the base experiments.

5.2.2 Gradient estimators

The previous section compares gradient estimators on the basis of validation set
reward. A further comparison of the gradient estimators can be found in Figure
, which depicts the average norm of gradients produced by the three gradient

estimators on the reverse task, where very different behaviors can be observed.

Generally speaking, the smaller the value of o, the larger the gradient, since the

normalizing part of the estimator grows, i.e.

lim — = oo, 9)

where the number of exploration directions NN is constant. This is visible in the
ranges of the y-axes and quite important considering that the models all start from
the same point and follow the same data trajectory (minibatching with torchtext
is deterministic when the same seed is used). It is obvious that the initial esti-
mates of the forward FD and vanilla estimators have lasting consequences for the
entirety of the training process, while the antithetic estimator proposes gradients

of (comparatively) similar norm at every step.

A larger o could make the vanilla estimator a viable alternative, while the same
might be true for using the forward FD estimator with smaller ¢ values. However,
as [ aim to test a variety of scenarios in my experiments, obtaining positive results
with all three gradient estimators is not a priority. Furthermore, the core reference

papers of this thesis (Mania et al), 2018; Salimans et al, 2017) employ the antithetic
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variant of gradient estimation, to which their variance reduction techniques are

applied. Therefore, I leave the investigation of other gradient estimators for future

work.
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Figure 3: Gradient norms during training for the reverse task, with different o values. See
Figure E for training specifications.

5.2.3 Augmented Random Search (ARS)

In Section E I pointed out that the given definitions of the gradient estimators are
often modified in practice in order to tailor them to a particular problem. Two

examples of this are proposed in the ARS algorithm of (Mania et all, 2018):

1. Scaling the gradient by the standard deviation of the collected rewards, in-

stead of by o.

2. Incorporating only the top performing exploration directions ¢; into the weighted

sum, i.e. the ones that achieve highest rewards f(6 £ oe).

A third technique used in ARS is normalization of the inputs. This makes sense

for the MuJoCo tasks, where inputs are feature vectors where each feature has a

Rewards stdev on the sort task

Standard deviation
= N N NG
o] o N =8

g
o

g
=~

200 300 400 500
Iteration

0 100
Figure 4: Standard deviation of the rewards collected at every iteration on the sort task.

o = 0.05, antithetic gradient estimator.
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different value rangeg, but not in a seq2seq context where the input consists of
one-hot vectors, and meaningful representations (i.e. embeddings) are learned in

the course of training.

Scaling by the standard deviation was motivated by the rising standard deviation of
rewards during training (Mania et al, 2018, see Figure 1). Following this example,
I plot the reward standard deviation og during learning the sort task (Figure @)
The behaviour of the standard deviation differs greatly from the values Mania
et al| report for the Humanoid task. As such, I expect this modification to the
gradient estimate to perform worse on the three seq2seq tasks. The second idea
is a way of discarding badly performing exploration directions, which, intuitively,
would lead to larger gradients. It is easy to see how the combination of these two
strategies could lead to favourable results - the effect of each modification balances

the other in the gradient estimation.
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Figure 5: Comparison of three ARS scenarios (all explorations directions, top 24 and top 10
performing exploration directions; scaling by the standard deviation) with the base experiment.
o = 0.05, antithetic gradient estimator.

Finally, I train an ARS-based model for each of the three tasks and plot the
achieved validation set rewards in Figure E Above all, I compare the performance
to that of the base experiments. The results clearly show that the ARS modifica-
tions do not lead to a higher validation reward. Rather, they are pointedly worse,
especially when applied to the copy task. Within the ARS experiments, the best
model for all three tasks used only the ten exploration directions with best return
f(6 + o€) in the gradient estimate. Experiments with top performing directions
without scaling by the standard deviation are not shown, but also yielded no im-
provement over the base experiment. Scaling by the standard deviation as strategy

on its own predictably lead to the most significant decrease in performance.

9See for instance the state description of the Humanoid task: https://github.com/openai/gym/wiki/Humanoid-V1
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5.2.4 Step size

The estimation of the gradient is only one part of updating the model parameters.
Another is the step size, computed by one of the three optimizers mentioned in
Section @ All the experiments until now used a constant learning rate. However, a
dynamically computed step size tends to boost training flexibility in cross-entropy
based optimization. One should then pose the question of whether such a strategy
is beneficial for DFO as well.

Momentum Adam
45
2 40,0 g 40
2
® 375 2
g E b
* 35.0 . 35 ase
% % a = 0.001
S 325 A p=09 = — 2 =0.005
200 — 4 =09 20 a = 0.007
0 100 200 300 400 0 100 200 300 400
Iteration Iteration

(a) (b)

Figure 6: Using SGD with momentum and ADAM, validation set rewards compared to the base
experiment. ¢ = 0.05, antithetic gradient estimator.

A larger step size could either speed up learning or drive it in an undesirable
direction too quickly to recover. In Figure E I compare the achieved validation
reward on the reverse task when using Momentum-SGD (fa) and Apam (b)),
compared to the base experiment with constant learning rate SGD. The results
were similar across the other two tasks. For the momentum experiments, I try out
two values used often in practice, and keep the starting learning rate o = 0.001.
For AbAM, I noticed that a higher starting learning rate performed better, since
otherwise the updates were very small, slowing down training. The results are
comparable to the base experiment, with a slight increase in validation reward.
However, a difference can be seen in the update ratios. The update ratio denotes
how large the update step is as a percentage of the weights. For an update step

s; € R? computed at iteration k, it takes the form:

ratio = 15l (10)

where ||x|| is the Euclidean norm of vector x. In Figure [ the update ratio of
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Figure 7: Update ratios at every iteration on the Figure 8: Validation set rewards when using
copy task. ¢ = 0.05, antithetic gradient pre-trained embeddings on the reverse task.
estimator. ADpAM with a = 0.005.

the copy task under different optimizers is plotted. The “rough heuristic” for the
update ratio when using backpropagation is that it should be around 0.0014, We
can see that the ADAM optimizer quickly converges to this ratio, if a little lower.
SGD with momentum proposes larger update steps, and standard SGD fluctuates
strongly, which is to be expected since the update step size is proportional to the
computed gradient. It is interesting to note that ADAM proposes 20 times smaller
updates than SGD without momentum, but performs just as well. Furthermore,
the update step was not more difficult to compute with ADAM, and training times

were not affected negatively.

5.2.5 Using pre-trained embeddings

One of the model initialization methods in my implementation is loading pre-
trained embeddings. In the model, ~ 6% of the parameter weights are part of
an embedding matrix - either in the encoder or in the decoder. When using
pre-trained embeddings, the entries of ¢; corresponding to embedding entries in ¢
are masked, i.e. set to zero. This ensures that the embeddings are not trained.
Figure E shows that using pre-trained embeddings may result in a lower starting
validation reward, but in the course of training manage to yield better performance.
The embeddings for this experiment were loaded from the best backpropagation
checkpoint of the reverse task (BLEU-score 94.4), while the rest of the weights
were again initialized from the 29.6 BLEU checkpoint. Both PTE and no PTE
models were optimized with ADAM (a = 0.005).

0http://cs231n.github.io/neural-networks-3/#ratio
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5.2.6 Scaling to multiple workers

As already mentioned, Salimans et al| (2017) and Mania et al| (2018) scale their
approaches to multiple CPUs in order to solve several tasks in the MuJoCo simu-
lator. In my experiments with parallelizing DF seq2seq learning, I encountered a
serious limitation - in multithreaded scenarios the simultaneous evaluation of can-
didates 6 4+ o€ often caused instability of evaluations or even program termination
due to race conditionsd. A solution to this problem was cloning the JoeyNMT
model for every candidate-6 evaluation (in the case of parallel function evalua-
tions) or for every worker (in the case of parallel workers evaluating N candidates
each). However, in the first case, this resulted in a certain time and memory
overhead - for the antithetic gradient estimator, the model was cloned 2N times
in every iteration, where N is the number of exploration directions. I observed
a very slight speedup when using two workers compared to training sequentially
with one worker, and increasing training times when using more than two work-
ers. In the second case, the model was cloned once for every worker, but due to
communicating larger tensors (passing N exploration directions to each worker,
returning an array of computed rewards), training times were again similar to the
single-worker case. It is unclear whether the behaviour reported by Salimans et al.
could be achieved with better hardware, or efficient parallelization is beyond my
implementation. On the subject of training times, without parallelization it was
possible to use GPUs for training. The same model and DFO configuration needed
about 13 times longer on CPU than on GPU.

I tested various DF training scenarios on a total of 500 iterations. Despite con-
sidering different strategies for improving and speeding up learning, I achieved
only limited improvement over the simplest model using the antithetic gradient

estimator.

1A race condition occurs when different processes of threads attempt to change the shared data simultaneously. See e.g.
Netzer and Milley (1992).
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6 Discussion

The experiments in Section E showed clearly that the problem of applying DFO
to seq2seq poses a challenge. I tested out several training scenarios and varied

hyperparameters with limited success.

My main findings are the following;:

e Out of the three proposed methods for gradient estimation, the antithetic
gradient estimator exhibits the most consistent behaviour, producing gradi-
ents of similar norm during the entire training process. Less volatile than the
vanilla and forward FD estimators in the first 50 iterations, it achieves an
improvement over the initial validation reward that other, more complicated

gradients estimation techniques failed to reach.

e DFO algorithmic enhancements developed for the solving of a particular prob-
lem generally do not translate well to other problems as is. The ARS algo-
rithm proposed by Mania et al) (2018) performed excellently on the MuJoCo
tasks, as it was intended to do, but caused a significant decrease in perfor-

mance in my experiments with seq2seq models.

e Standard optimizers like ADAM and momentum-SGD can be used successfully
on gradient estimates. ADAM in particular stabilizes the update ratio and

achieves a higher validation reward than SGD.

e Pre-training a part of #, in this case the embeddings, proved beneficial to the
training process, pushing the validation reward higher in all three tasks. This
was true despite the fact that less than the embeddings constituted less than

6% of all model parameters.

e Without efficient parallelization, DFO is much slower than traditional back-
propagation training, and not a viable alternative. In hindsight, deferring
to an existing DFO implementation for the parallelization would have been
sensible, as that was the part I struggled with most. I believe, however, that
focusing on algorithmic enhancements in my experiments was the sensible

choice, considering the hardware at my disposal.

Next, I propose and discuss some ideas outside of the scope of this bachelor’s

thesis, that could potentially improve seq2seq DFO.
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In most of the experiments in Section E, I attemped to optimize while using all
parameters - perturbing every entry in 6 to obtain the candidates, as well us
updating every weight, even when the updates were of magnitude 10~* or less.
Practically all of the DFO implementations I discovered in my research used this
strategy. Nevertheless, in every iteration 15 — 30% of the entries of 6 receive an
update < 0.001. Discarding these entries from the computed update step could
reduce update noise, especially when optimizing larger networks. The idea of
discarding small weights bears some resemblance to the lottery ticket hypothesis
(Frankle and Carbin, 2018), which claims that, in the same number of iterations,
one can train only a subnetwork of the original neural network, achieving similar
test accuracy. An in-depth application of the lottery ticket hypothesis to DFO is

an exciting research avenue.

Another possible improvement in a similar direction is incorporating a learning-
to-learn, or meta-learning, approach to the parameter perturbations. For in-
stance, Chen et al| (2017) train optimizers based on RNNs that can optimize
low-dimensional DF functions. For the random search case specifically, an opti-
mizer that proposes which entries of 6 should be perturbed to achieve an optimal

improvement could be beneficial.

Lastly, applying DFO to optimize model architectures developed specifically for
backpropagation may be constraining. For example, the JoeyNMT encoder-decoder
models use soft attention instead of hard attention (Xu et al), 2015), due to the
fact that hard attention is not differentiable and needs to be estimated with sam-
ples. Still, trained models using hard attention have been found to perform better
(Shankar and Sarawagi, 2018), making it an attractive mechanism for DFO since
gradients are not computed. Beyond designing new neural network architectures
per hand, the possibility of evolving problem-specific architectures exists (Elsken
et all, 2018; Liu et al), 2017).
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7 Conclusion

I implemented DFO from scratch and applied it to three simple seq2seq tasks.
Applying DFO to seq2seq models was a challenging task, and one interesting for
many reasons. For one, the concept behind it was something entirely different
from my experience with machine learning until now. Moreover, while the main
idea behind DFO approaches is simple and intuitive, their execution opens a wide
range of possibilities, allowing for creative, problem-specific solutions. Although
the results to my experiments were far from overwhelming, I now have a much
better understanding of the theory behind and the practical approaches to DFO,

up to and including their implementation.

I look forward to furthering my knowledge on the subject and experimenting with

the numerous new neural DFO approaches introduced every year.
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