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Abstract
Named Entity Recognition (NER) and Named Entity Classification (NEC) aren’t new
problems and have many existing and performant solutions. In this project however
we try to solve NEC with pre-trained generic transformer models like T5 and different
LLMs by translating the problem into a task that is more familiar to these models like
natural language inference (NLI), masked language modeling (MLM) or prompting. We
compare our different task formulations with each other in both a zero-shot setting as
well as after fine-tuning the models and we also compare their performance to a state-
of-the-art solution (GLiNER). We also try to gain as much introspection as possible
into these models to understand which parts of the input and task formulation play the
most important role in these settings.
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1 Introduction
In this project, we aim to compare various approaches to named entity recognition and
named entity classification. We evaluate based on the achieved accuracies and analyze
the effect of model fine-tuning. We also perform an analysis of the relevance of the
context for entity classification.

1.1 Named Entity Recognition
Named entity recognition (NER) is a problem in computer linguistics in which entities
must be identified within a given text or sentence and then classified into one of several
possible labels. These labels may for example be person, building, or location. Besides
serving as a benchmark for natural language processing techniques, NER also has
practical applications when extracting information from unstructured text. This may
for example be useful in search engines, chat-bots, and other real-world tasks. Today,
NER techniques generally rely on deep learning to achieve competitive results.

1.2 Named Entity Classification
Named entity classification (NEC) is a simplified formulation of the NER problem.
Whereas in NER, the position of the entities in the sentence is unknown, named entity
classification only requires the classification of a given entity in the input text whose
span is already known. As we will see in Section 3, this enables several interesting
approaches that would be impractical with an NER task formulation. The NEC task
formulation also avoids potential ambiguities in the spans of entities. For example, it
may be unclear whether quantifiers, adjectives, etc. are part of an entity, which makes
evaluating the correctness of a prediction more difficult. In this work, we therefore
mainly focus on the NEC task setting.

1.3 State of the Art
Transformer-based techniques such as GLiNER (Zaratiana et al. 2023) have achieved
high accuracies in classical named entity recognition, with the achieved F1 scores in task
settings, such as CoNLL, in some cases surpassing human-level performance (Tjong Kim
Sang and De Meulder 2003). In our evaluation, we therefore chose GLiNER adapted to
the NEC task as our reference benchmark in order to compare our own techniques. We
discuss GLiNER in more detail in Section 2.1.2.

1
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2 Models and Datasets
In the following sections we introduce the models and datasets we used in this project.

2.1 Models

2.1.1 T5
T5 is an encoder/decoder text-to-text transformer model introduced by Google (Raffel
et al. 2023). It closely follows the originally proposed form of the transformer model
described in the paper ‘Attention Is All You Need’ (Vaswani et al. 2023). The goal of T5
is to teach the model generalized knowledge about taking text as input and producing
new text as output, and to then use that knowledge for specialized downstream tasks.
This is also called transfer learning and gives T5 its name (Text-to-Text Transfer
Transformer). The generalized knowledge was taught in pre-learning using techniques
like corrupting spans (similar to masked language modeling that was used to train
BERT, more on this in Section 3.3). Some examples of the downstream Natural Lan-
guage Processing (NLP) tasks are translation, evaluating grammaticality of sentences
(COLA), evaluating semantic similarity of sentences (STSB), summarizing text, natural
language inference (NLI, see Section 3.2) and more. All of these downstream tasks are
formulated as pure text inputs to the model.

2.1.2 GLiNER
In this work, we will use GLiNER (Zaratiana et al. 2023) as our reference model
for comparison with our own approaches. GLiNER, which stands for ‘Generalist Light-
weight Model for Named Entity Recognition’, is an advanced model designed to identify
various types of entities within text using a bidirectional transformer encoder, akin to
models like BERT (Devlin et al. 2018). It offers a practical alternative to traditional
NER models that are confined to predefined entity categories and to large language
models (LLMs) that, despite their flexibility, are often resource-intensive and costly.
A huge advantage making this model particularly useful for us is that the labels are
not predefined, enabling GLiNER to work with arbitrary sets of labels (of limited size)
without having to ‘learn’ those labels first. GLiNER was trained on the Pile-NER
Dataset (Section 2.2.2).

2.1.3 Large Language Models (LLMs)
In this work, we additionally evaluate the suitability of LLMs for NER tasks. We chose
to focus on Llama-3.1-8B (Grattafiori et al. 2024) and DeepSeek-R1-Distill-Qwen-32B
(DeepSeek-AI 2025) since the Llama model is the most obvious representative of a
lightweight model we can run locally and the DeepSeek model of the modern reasoning
models and both are open-source and accessible for free.

2.1.3.1 Llama-3.1-8B
Llama-3.1-8B (Grattafiori et al. 2024) is a multilingual LLM developed by Meta AI
that features 8 billion parameters. Released in July 2024 as part of the Llama 3.1 series,

2
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it is designed for lightweight, efficient deployment across various platforms. The 8B
variant is particularly noted for its balance between performance and resource efficiency,
making it suitable for local text generation tasks and enabling us to run it locally via
Ollama.

2.1.3.2 DeepSeek-R1-Distill-Qwen-32B
DeepSeek-R1-Distill-Qwen-32B (DeepSeek-AI 2025) is a distilled reasoning LLM devel-
oped by DeepSeek-AI, based on the Qwen 2.5 architecture with 32 billion parameters.
What sets DeepSeek apart is its innovative use of reinforcement learning (RL) to
enhance reasoning capabilities without relying on supervised fine-tuning. This approach
allows the model to develop complex problem-solving skills, such as self-verification and
reflection, through pure RL methods.

2.2 Datasets
CoNLL Pile-NER FIGER

Size (sentences) 14041 45889 2004220
Number of distinct

Labels 4 12963 • coarse: 7
• fine: 106

Annotation Reliabil-
ity

low (Rücker and Ak-
bik 2023) medium¹ very low¹

Table 1: Dataset Overview

2.2.1 CoNLL
The CoNLL-03 dataset, introduced during the 2003 Conference on Natural Language
Learning (CoNLL) (Tjong Kim Sang and De Meulder 2003) comprises annotated text
from the Reuters Corpus, focusing on four entity types: persons (PER), organizations
(ORG), locations (LOC), and miscellaneous entities (MISC). Recent studies have iden-
tified annotation inconsistencies and errors within the dataset (Rücker and Akbik 2023).

2.2.2 Pile-NER
The Pile-NER dataset, introduced in 2023 by Zhou et al. (Zhou et al. 2023), is a com-
prehensive resource for open-type Named Entity Recognition (NER). Derived from the
Pile Corpus, it encompasses approximately 240,000 entity mentions and 12963 distinct
entity types (after lowercasing all the labels). The dataset’s passages are enhanced
through processing with ChatGPT, facilitating the transparent generation of entity
annotations. Due to the diversity of labels, this dataset is most suitable for training
models such as GLiNER (Section 2.1.2). The labels are mostly English, but upon closer
inspection consist of all sorts of languages (Arabic, Chinese, German, Russian, Spanish,
…). Many labels are highly specific (e.g. ‘2,4,6-trimethylphenyl’) or strongly overlap (e.g.
‘mythical being’, ‘mythical character’, ‘mythical creature’, ‘mythical entity’, ‘mythical

¹See Section 5.3
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figure’). These peculiarities make the Pile-NER dataset less suitable for the evaluation
of our approaches, not to mention the fact that some of the methods discussed in this
work are inefficient for large numbers of labels. The latter problem could perhaps be
mitigated by providing a fixed number of possible labels containing the true label for
each test instance.

2.2.3 FIGER
Fine-Grained Entity Recognition (FIGER) is a NER system with higher granularity
than many alternatives that were only trained on datasets like CoNLL with only 4
labels (Ling and Weld 2021). This system was trained on a custom dataset with 112
tags in total generated from the Freebase types set. Even though the FIGER dataset
has been curated by hand, this still poses some possibility for errors in the dataset since
these labels are community-assigned. In this work, when we mention FIGER, we refer
to the dataset, not to the NER system.

The main upside of the FIGER dataset is that it is a lot more fine-grained than CoNLL,
but without having thousands of labels like Pile-NER thus bridging the gap between
these two datasets. Our approaches (NLI and MLM task formulations, Section 3) don’t
scale well with an increased amount of labels since for example for NLI we formulate
one hypothesis for each label in the dataset to classify an entity. Because of this, FIGER
is our best option to test a more fine-grained NEC setting while still being feasible for
our custom approaches.

Another opportunity that FIGER provides is that it is a hierarchic dataset, meaning
that each labeled entity has a coarse and a fine label. After some modifications and
cleanups to the dataset, we were able to provide two sets of labels for FIGER:

• A coarse one containing 7 labels: person, organization, location, product, art,
event and building

• A fine one containing 106 labels: actor, architect, artist, athlete, … (Section A.1)

This allows us to isolate testing of label granularity without any other variables, for
example, we can provide our model with the same subset of the FIGER dataset with
the same sentences and entities to categorize, but one time with the coarse label set and
a second time with the fine label set. Any differences in performance between these two
runs should only reflect on the models’ capability to handle fine-grained labels. Here is
an example of how the labels might change with granularity:

4
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FIGER-coarse:

Sentence: In 1995, Martin appeared on Rosie Flores 's Rockabilly Filly album for
HighTone Records.
Entity: Rosie Flores
True Label(s): person

FIGER-fine:

Sentence: In 1995, Martin appeared on Rosie Flores 's Rockabilly Filly album for
HighTone Records.
Entity: Rosie Flores
True Label(s): musician, artist

FIGER, especially FIGER-fine can have multiple labels per entity. A model only needs
to predict one of the true labels for it to be evaluated as correct. Only one entity per
sentence is labeled.

5
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3 Method
We evaluate several methods for named entity classification, focusing on Google’s T5
model but also investigating alternatives such as Large Language Models. We evaluate
how relevant the sentence context is for the model to make its decision compared to
performing the classification of the entity by itself.

3.1 GLiNER NEC
GLiNER does not natively support named entity classification, meaning we cannot
specify a target entity within a sentence to classify. To apply GLiNER to the NEC task
anyway, it can be adapted by extracting entities from the text (NER) and matching
them to the target entity. The following pseudocode details this approach:

def NEC(sentence, target_entity, labels):
    labeled_entities = NER(sentence, labels)
    for entity in labeled_entities:
        if entity['text'] == target_entity:
            return entity['label']
    return "Target entity not found during NER."

Obviously, this approach is at a disadvantage compared to native NEC approaches that
can take advantage of the target entity being provided and will take significant losses in
accuracy due to not finding the correct entity in the first place. Nevertheless, this will
serve us as a comparison point that useful NEC models should be competitive against.

3.2 NLI with T5
As our first approach, we formulate the named entity classification task as a set of
natural language inference tasks. Given a sentence, the span of the entity within the
sentence, that is to be classified, and the set of possible labels we create a set of
hypotheses, one for each label.

To illustrate the task setting, we provide an example. Given the sentence ‘Barack Obama
was the president of the United States.’, with ‘Barack Obama’ being the entity to be
labeled and the possible labels being organization, location, and person, we create the
following hypotheses:

• Barack Obama was the president of the United States. Barack Obama is a
organization

• Barack Obama was the president of the United States. Barack Obama is a
location

• Barack Obama was the president of the United States. Barack Obama is a person

These hypotheses are then given to the NLI model. Initially, we intended to use google/
t5_xxl_true_nli_mixture, a variant of Google’s T5 model, fine-tuned for natural lan-
guage inference tasks as described in (Honovich et al. 2022). Due to memory constraints
of the GPUs available to us, we resorted to using the smaller google/t5_base variant,
which is also trained on a set of multiple downstream tasks including NLI, and still

6
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performs reasonably well in this task. We expect to recover some of the accuracy lost
by using the base model that is not exclusively optimized for NLI through our own fine-
tuning as described in Section 3.5.

We then look at the probability of entailment for each of the hypotheses and pick the
hypothesis with the highest probability of entailment for our prediction. The label used
in this hypothesis is the label predicted for the entity to be classified.

One shortcoming of this approach is the grammaticality of the hypothesis. As the label
is inserted verbatim into the hypothesis, ungrammatical hypotheses may occur. In our
example ‘Barack Obama is a organization’ should ideally be ‘Barack Obama is an
organization’. There are several possible approaches to mitigate this issue. Initially, we
will evaluate the output quality without any mitigations. In a later step, we make use
of fine-tuning, to optimize the model to our task formulation. We hypothesize that this
process is able to mitigate this possible issue as the model may become accustomed to
receiving ungrammatical input.

3.3 MLM with T5 (label masking)
Our second approach formulates the NEC task as a masked language modeling (MLM)
task. For each sentence and entity in the input sentence, we will formulate a hypothesis
similar to the hypotheses in our NLI approach. Instead of a hypothesis for each label,
however, we just have one hypothesis with a mask at the position where the label should
be. We then present the model with a list of all labels and return the one with the
highest probability of replacing the mask.

• Barack Obama was the president of the United States. Barack Obama is a
[MASK].

‣ Try the labels ‘organization’, ‘location’, and ‘person’ and return the one
that best fits into the gap

Contrary to BERT, T5 wasn’t trained on MLM but on a slight variation called
corrupting spans. The main difference for our purposes is that T5 allows spans to
replace multiple tokens of text while Bert’s MLM only masks one token at a time. This
means that because we use T5 this approach also allows for multi-token labels. The
task formulation for T5′s span corruption looks a bit more complex but is essentially
the same:

• Barack Obama was the president of the United States. Barack Obama is a
<extra_id_0>.

‣ Compute loss for outputs ‘<extra_id_0> organization <extra_id_1>’,
‘<extra_id_0> location <extra_id_1>’, … and return the one with the
lowest loss

As with the NLI task formulation, we make use of the google/t5_base model to limit
memory usage. This approach has the same shortcomings as our NLI approach since

7
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it also suffers from the possibility of ungrammatical hypotheses. We will rely on fine-
tuning to mitigate this for this approach as well.

3.4 MLM with T5 (entity masking)
Our third and final T5-based approach is also an MLM task formulation. This time
however we don’t add a hypothesis with a masked label to the sentence but instead mask
the entity itself in the original sentence. We then query the probabilities of different
label representatives from the same dataset (chosen at random, current entity excluded)
and choose the label that the representative with the highest probability belongs to.

• [MASK] was the president of the United States.
‣ Try the representatives United Nations, Nestlé, Tokyo, Hudson River,

Keanu Reeves, Angela Merkel, … and return the label that the representative
with the highest probability belongs to

For this approach, we highly rely on T5′s ability to mask multiple tokens since most
entities consist of more than one token. As before, we are using the google/t5_base
model.

We expect this approach to perform significantly worse than our first two approaches
since by masking the original entity the model gets less information as input. Previously
the model had both the entity and the context around it as input, now it only has
the latter. However, this experiment might still prove useful for learning about the
importance of the sentence context compared to the entity itself.

Another disadvantage is that the success of this approach is highly dependent on the
choice of representatives for each class. In the example above, if one of the randomly
chosen representatives for the person class had been ‘Donald Trump’ instead the model
would probably assign it a much higher probability compared to ‘Keanu Reeves’ or
‘Angela Merkel’ since both have never been the president of the United States. This
might only improve to a certain degree by fine-tuning the model since during training
the model only gets presented by one representative as the correct replacement for the
mask even though all representatives of the gold label would have been correct.

3.5 Fine-tuning
Up to this point we have used existing models trained on generic text corpora with
more general task formulations such as NLI and MLM. In an attempt to improve the
accuracy of our models, we now employ fine-tuning. From our datasets, we create a set
of task formulations on which we further train each model. We hypothesize that this
can greatly improve the accuracy of each model as compared to zero-shot approaches
with the generic models.

For both the T5 NLI and the T5 MLM with class masking, we extract 1000 sentences
from the FIGER-coarse dataset and construct the tasks for each pre-labeled entity.
Depending on the method, this results in between 1221 and 8547 tasks. We then train

8
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the model, starting from the pre-trained baseline google/t5_base, for 100 epochs. Model
checkpoints are saved after each epoch.

3.6 Word2Vec
For the task of named entity classification, it may be interesting to know how much
of the information used in the classification comes from the entity itself, as opposed
to the context it is placed in. We therefore investigate a classification approach using
word embeddings. This approach allows us to eliminate any context information and
therefore to investigate the degree of classification accuracy that can be achieved from
the entity alone. Word2Vec is a word embedding method for turning words into n-
dimensional vectors that statistically capture some semantic relations between words.
They are obtained by training a neural network model on a large text corpus to either
predict the target word given its surrounding context or alternatively predict the context
given the target word (Mikolov et al. 2013). The trained weights are used to obtain
embeddings for each word. One of the semantic properties that are captured is the
semantic similarity which can be obtained by computing the cosine distance between
two word embeddings (Mikolov et al. 2013). A high similarity shows that the words
frequently occur in similar contexts and are therefore likely semantically similar.

When restricting the named entity recognition task to only single-word entities for
which the embeddings are known, we can construct a basic named entity classification
formulation. For each class label, we pick a set of representative entities that fit the
given label. For example, for the label location we may pick the representatives Canada,
forest, and 8th street. The number of representatives must be high to cover a wide range
of different entities matching the label.

In order to perform the classification, we then determine the word embedding for the
entity to be classified and compute the similarity of this embedding with the embeddings
of all of the representative words. The closest matching representative is determined
and its label is used as the prediction.

This method has the obvious downside of only being able to handle known words for
which embeddings have already been determined.

We evaluate both using a pre-trained Word2Vec model trained on the Google News
corpus (Mikolov et al. 2013), as well as training our own model on our chosen NER
datasets. As our initial tests with the self-trained Word2Vec model show very little
promise, likely due to the small amount of training data available, this report only
includes the results from the pre-trained Word2Vec model. The implementation for the
self-trained Word2Vec model is nevertheless included in the projects code repository.

3.7 LLM Prompting
Due to their outstanding generalization capabilities, large language models have gained
widespread use for a wide variety of tasks in recent years. We therefore compare our
more targeted approaches shown in previous sections with a simple prompting approach
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of several large language models. A prompt containing the task description and an
example are passed to the LLM. Since LLMs tend to output unnecessary tokens (e.g.
explanations), we need to extract the answer. To make the answer easier to extract,
the prompt contains instructions on how to mark the answer. The prompt used in this
project for named entity classification looks like this:

"You are part of a named entity classification pipeline. 
Given an entity, find the best fitting label of the provided labels (do not
invent your own labels!). 
Choose the label so that the sentence "Target entity is a chosen_label" makes
the most sense.
Mark your result like this for easy extraction: <answer>predicted_class</answer>.

Example:
Labels == ['person', 'organization', 'location', 'miscellaneous']
Sentence: 'NASA sent astronauts to the moon.' 
Target Entity: NASA
Desired Result: <answer>organization</answer>

Your Task:"

Then the actual available labels, the target sentence, and the target entity are added
to the prompt.

We also provide a similar implementation for named entity recognition, where the model
first has to find the entities to classify.

A disadvantage of this approach is that the accuracy is expected to go down significantly
for a larger number of possible labels. Furthermore, large language models, especially
reasoning models, can be slow and resource-intensive. Nevertheless, we hypothesize that
this approach will deliver results of high accuracy, making it competitive with state-of-
the-art NEC methods.
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4 Experiments
4.1 Model Comparison
We evaluate the model variants shown in Section 3 on their NEC accuracy on 100 test
instances from the CoNLL, FIGER-fine, and FIGER-coarse datasets. For the fine-tuned
model variants we ensure that there is no overlap in the examples from the dataset that
are used for fine-tuning and those which are used for model evaluation. The results can
be found in Table 3.

We additionally analyze how the fine-tuning of a model on one of our datasets transfers
to other datasets.

GLiNER is also evaluated on the NER task, since the NEC implementation with
GLiNER that serves as our benchmark is based on NER as detailed in Section 3.1.

4.2 Analysing Context Word Relevance
As we are interested in the importance of context for the named entity classification
task, we perform an analysis where we replace individual words in the context with
a placeholder [blank] and determine the effect of the prediction. We do this for each
individual word in the input sentence including those which are part of the entity in
which is to be classified.

4.2.1 Contextless Classification
As an extreme case, we use the Word2Vec embeddings method as described in
Section 3.6 to obtain a baseline on the contextless classification of single-word entities.

4.3 Hypotheses
We had three main hypotheses regarding our NLP task formulations for T5 that we
tried to prove or disprove with our experiments. First, we stated that fine-tuning would
be required to achieve good classification performance, especially for more fine-grained
datasets like FIGER-fine.

We also hypothesized that our Word2Vec baseline would benefit from finer granularity
since the word embeddings would then be closer, whereas our T5 approaches would
rather benefit from coarser labeled datasets.

Our final hypothesis was that the performance improvements gained by fine-tuning the
T5 models wouldn’t translate to datasets with different label names, especially if those
datasets use more fine-grained labels.

11



Named Entity Recognition of Different Granularities Formal Semantics WS24/25

5 Results and Analysis
In the following sections, we evaluate and interpret the results of our experiments.

5.1 GLiNER NER
CoNLL

Mean Precision 0.5805
Mean Recall 0.5894

Mean F1-Score 0.5756

Table 2: GLiNER NER test results

Despite GLiNER being the state-of-the-art model for named entity recognition claimed
to achieve near-perfect scores (Zaratiana et al. 2023), the results in Table 2 suggest
otherwise. This, however, does not stem from weaknesses of the model but from
annotation errors and incompleteness in the datasets, as well as disagreements between
the model and the dataset as to what counts as an entity. Below are examples that
explain how a state-of-the-art model can achieve such low results on the CoNLL dataset:

Example 1

Sentence: He told Reuters the reason was his own front-page editorial, entitled
"A Chronic Mental Illness" in which he attacks compliant Arab leaders for serving
U.S. and Israeli interests.
True Annotation: [('Reuters', 'organization'), ('Arab', 'miscellaneous'),
('U.S.', 'location'), ('Israeli', 'miscellaneous')]
Predicted Annotation: [('He', 'person'), ('Reuters', 'organization'), ('he',
'person'), ('U.S.', 'location')]
Precision: 0.5; Recall: 0.5; F1-score: 0.5 

In this example, GLiNER classifies the pronoun ‘He’ as an entity, but does not classify
‘Arab’ and ‘Israeli’ as entities, contrary to the solution provided by the dataset. Indeed,
‘Arab’ and ‘Israeli’ should not be labeled as entities as they are adjectives and not
entities of their own.

Example 2
Sentence: The committee consists of the chiefs of defence staff of each alliance
country except Iceland, which has no armed forces.
True Annotation: [('Iceland', 'location')]
Predicted Annotation: [('The committee', 'organization'), ('chiefs of defence
staff', 'person'), ('Iceland', 'location')]
Precision: 0.3333333333333333; Recall: 1.0; F1-score: 0.5 

In this example, GLiNER finds additional entities: ‘The committee’ and ‘chiefs of
defence staff’, which are valid entities that are unfortunately not labeled in the CoNLL
dataset.
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This NER analysis focuses on the CoNLL dataset because the other datasets are
unsuitable: GLiNER cannot handle the sheer amount of labels of the Pile-NER dataset,
and the FIGER dataset only features one labeled entity per sentence, even though there
are other valid entities present, thus resulting in very low precision values as GLiNER
finds those additional unmarked entities.

This matters to NEC, the main focus of this work, because we implemented NEC with
GLiNER based on NER (see Section 3.1). The problem of not finding the intended
entities transfers to and worsens the GLiNER NEC test results in Table 3.

5.2 NEC Overview
Model CoNLL FIGER-coarse FIGER-fine

T5 NLI - zero-shot 31.07% 54.00% 21.00%
T5 MLM label - zero-shot 11.86% 72.00% 15.00%
T5 MLM entity - zero-shot 50.28% 50.00% 20.00%

T5 NLI - fine-tuned 61.02% 96.00% 53.00%
T5 MLM label - fine-tuned 58.76% 94.00% 37.00%
T5 MLM entity - fine-tuned 40.68% 56.00% 18.00%

Llama-3.1-8B prompting 72.88% 87.00% 67.00%
DeepSeek-R1 prompting 84.18% 94.00% 72.00%

Word2Vec (baseline) 23.73% 33.00% 9.00%
GLiNER NEC 61.58% 58.00% 40.00%

Table 3: Accuracy of all implemented NEC approaches in per-
cent.

The table above was created by applying the models to 100 test instances from each
dataset. The CoNLL test instances can contain multiple entities, hence the resulting
percentages which do not end with .00%.

5.2.1 T5 zero-shot
All-in-all our custom task formulations for the T5 model have worked quite well, mostly
performing significantly better than the baseline thus proving that this approach for
NEC works.

On the FIGER-coarse dataset, our approaches are surprisingly quite competitive com-
pared to the existing GLiNER model, with ‘T5 NLI’ and ‘T5 MLM entity’ only falling a
couple of percent short of it and ‘T5 MLM label’ even beating GLiNER NEC by about
14%. On the CoNLL and FIGER-fine dataset however, our approaches fall significantly
behind GLiNER. It is worth noting that while the ‘MLM label’ approach was the most
performant on FIGER-coarse it was also the least performant on both CoNLL and
FIGER-fine, suggesting that while being a great approach under ideal conditions it
might also be the most susceptible against the problems described below.

13



Named Entity Recognition of Different Granularities Formal Semantics WS24/25

For CoNLL the reason for the poor performance of the NLI and MLM label approaches
might be that the dataset contains a label called ‘Miscellaneous’ which doesn’t work well
with our task formulations. Not only is the hypothesis ‘[entity] is a Miscellaneous’ (used
in both NLI and MLM label) ungrammatical but it also is semantically a lot less sensical
than for the other labels. One might think that this would result in the model rarely
assigning the ‘Miscellaneous’ label to a given input however we observed the opposite
with the T5 MLM label approach categorizing every input as ‘Miscellaneous’ 100% of
the time. This explains the low accuracy of 11.86% on CoNLL of this approach since
with this behavior the model can only be correct if the gold label for the input is
‘Miscellaneous’ as well. This is significantly worse than even the Word2Vec baseline,
and the NLI approach can also beat the baseline by only 7%. Since the MLM entity
approach relies on representatives instead of the label name it is not affected by this
and thus it performs quite well on CoNLL with 50.28% accuracy.

For FIGER-fine the reason for the poor performance is probably the high granularity
and the resulting high amount of labels in the dataset. All our approaches rely heavily
on the labels being sufficiently distinct from each other. In FIGER-fine however, there
are many sets of labels where all of them could apply to a given entity, for example,
‘government’ and ‘government agency’, or ‘broadcast network’, ‘broadcast program’,
and ‘tv channel’. While all our approaches still beat the baseline here they only do so
by 6-12% and they fall significantly behind GLiNER.

5.2.2 T5 fine-tuned
When fine-tuning the T5 model for our three T5-based methods we initially observe a
decrease of the evaluation loss as expected. However, rather quickly after less than 20
epochs, we observed a stark increase of the evaluation loss on all models. See Figure 1,
Figure 2 and Figure 3 for the respective loss curves.

Figure 1: T5 Fine-tuning loss curve for MLM (entity masking)
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Figure 2: T5 Fine-tuning loss curve for MLM (label masking)

Figure 3: T5 Fine-tuning loss curve for NLI

We attribute this behavior to over-fitting. As the number of training samples we use
is fairly small at several thousand, the model is easily able to memorize our training
samples instead of generalizing. We therefore evaluate the fine-tuned models both at
the lowest point in their loss curve, as well as at the 100 epoch point, and compare the
overall prediction accuracy of the NEC task between those two points.

As expected, we observe that the prediction accuracy is highest at the lowest point of
the loss curve for almost all experiments. Table 3 therefore shows these better results.
For reference, we include the results after the full 100 epochs of training in the appendix
under Section A.2.
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Overall, fine-tuning leads to consistent improvements across the NLI and MLM label
model and all datasets. For the MLM entity model fine-tuning results in slightly worse
performance for all datasets except FIGER-coarse. This is likely due to only being able
to pick one of many possible representatives per example during fine-tuning.

Even though we only fine-tune using data from the FIGER-coarse dataset, major
improvements can be seen across all datasets. This is likely due to the use of a
very generic T5 model for our zero-shot testing so any amount of fine-tuning with a
comparable task setting will likely improve the models’ performance. Surprisingly, the
NLI-based approach and the MLM label masking approach are able to achieve near-
perfect accuracies on the FIGER-coarse dataset. This is despite ensuring no overlap
between fine-tuning and evaluation datasets. Over-fitting is therefore not a factor in
our evaluation performance.

5.2.3 LLM prompting
The following subsections show and interpret the results for both the named entity
recognition and named entity classification methods for our LLM-based approaches.

5.2.3.1 NER

Llama-3.1-8B DeepSeek-R1
Mean Precision 34,41% 49,65%
Mean Recall 44,63% 59,65%

Mean F1-Score 36,63% 52,06%

Table 4: LLM NER test results CoNLL

Compared to the NER results in this table, the NEC results in Table 3 appear signif-
icantly better. This may be because NER is more complex than NEC, requiring the
models to first find the correct entities. The main issue is though that we have the same
problems detailed in Section 5.1, finding too many/few entities due to unintuitive or
plainly wrong dataset labeling. Indeed, the DeepSeek-R1 model even achieves results
comparable to our SOTA NER model GLiNER in Table 2, suggesting that it is quite
suitable for the NER task too.

5.2.3.2 NEC
Table 3 showcases the superiority of large language models when it comes to general-
izing to new tasks. Our hypothesis of LLMs being highly competitive in NER tasks is
therefore confirmed. Nevertheless, a disadvantage of large language models is that, as
hypothesized in Section 3.7, the accuracy appears to drop significantly with the growing
number of labels. This is seemingly confirmed by Table 3, specifically by the drop in
accuracy from 94% to 72% from the FIGER-coarse to the FIGER-fine dataset of the
DeepSeek-R1 model, the only difference being the number of labels. However, upon
closer inspection and manually checking the logs from the test runs for DeepSeek-R1,
the instances evaluated as false are mostly due to errors or ambiguity in the datasets,
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which drastically increase with the number of labels. We analyze this in more detail in
Section 5.3. Table 5 shows that the accuracy does decrease with the number of labels,
but not as much as the initial results suggest. These results support the concept of large
language models being a useful universal tool for language tasks. Unsurprisingly, the
DeepSeek-R1 reasoning model performed better than the small Llama-3.1-8B model on
all datasets. Its reasoning and self-checking capabilities enhance the reliability of its
predictions, but make it slow and expensive compared to other methods.

5.3 Dataset Reliability
To analyze the reliability of the datasets we sift through the generated logs of our
best-performing model, DeepSeek-R1, and investigate the cause of the errors, instances
where the predicted label is not the true label provided by the dataset.

5.3.1 CoNLL
Since there can be multiple entities in CoNLL sentences, we have 177 classified entities
for our test run of 100 sentences. We found 20 ambiguous instances where the label
predicted by DeepSeek-R1 is correct but not equal to the true label, this is mostly due
to instances that are not even sentences, see Section A.3.1 for an example.

A common theme regarding the ambiguous instances is the location/organization ambi-
guity, for example a country can be referred to as a location as well as an organization.

We also found 5 non-entity adjectives labeled as ‘miscellaneous’, to which DeepSeek-
R1 then assigns the corresponding label of the subject. For example, ‘Syrian’ in ‘Syrian
President’ is labeled as ‘miscellaneous’, and DeepSeek-R1 assigns it the label ‘person’.

We discovered only two actual mis-predictions of the DeepSeek-R1 model which can be
found in Section A.3.1.

Therefore, the DeepSeek-R1 model got 175 out of 177 instances in the GLiNER test run
correct (disregarding the possibility of it mis-predicting an entity that is also mislabeled
in the dataset with the same label the model incorrectly predicted) and thus achieved
an accuracy of 98.87%. Accordingly, to account for the dataset problems, all CoNLL
results can be multiplied by (0.9887/0.8418), or increased by a factor of 1.175. Table 5
contains the with this technique compensated values.

5.3.2 FIGER-coarse
This dataset appears to be more reliable than CoNLL. The instances are all valid
sentences and DeepSeek-R1 thus achieved 94% accuracy, leaving us with six predictions
evaluated as incorrect to analyze.

Three instances were due to ambiguity and in two instances, the target entity was not
in the sentence. In these cases, the true label is still more intuitive than the model
prediction, hence we shall count these as model errors anyway. Example instances as
well as one wrong model prediction can be found in Section A.3.2.
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Thus, DeepSeek’s true accuracy on the test sample from the FIGER-coarse dataset is
97%. To compensate for the dataset errors, the values in the FIGER-coarse column in
Table 3 should be increased by a factor of 1.043.

5.3.3 FIGER-fine
On the sample from the FIGER-fine dataset, DeepSeek-R1 achieved 72% accuracy,
which means there are 28 mistakes to investigate. Ambiguity and annotation errors
are expected to be significantly more common compared to FIGER-coarse due to the
increase in labels. There will be more instances where multiple labels fit to an entity,
due to label overlap, e.g. artist vs. musician. Not all entities have all the labels that
would fit them assigned, therefore we expect there to be numerous instances where
sensible predictions are evaluated as false. Indeed, in the sample of 100 instances, we
found 9 such ambiguities, examples of which can be found in Section A.3.3.

Somewhat surprisingly, the number of labels that are not incomplete or ambiguous, but
plainly wrong is even higher, we discovered 11 such occurrences.

We expected our model to perform worse on this dataset due to the increased number
of labels, and indeed we discovered 7 instances where our model arguably made an
error. For this there can be different reasons, the solution not being deductible from
the context being one of them. Examples can once again be found in Section A.3.3.

Hence the true accuracy of DeepSeek-R1 on the FIGER-fine dataset is approximately
93%. The FIGER column in Table 5 can thus be multiplied by 1.29 to compensate for
the labeling errors and ambiguities.

5.3.4 Compensating for the Dataset Problems

Model CoNLL FIGER-coarse FIGER-fine
T5 NLI - zero-shot 36.51% 56.32% 27.09%

T5 MLM label - zero-shot 13.94% 75.10% 19.35%
T5 MLM entity - zero-shot 59.08% 52.15% 25.80%

T5 NLI - fine-tuned 71.70% 100.13% 68.37%
T5 MLM label - fine-tuned 69.04% 98.04% 47.73%
T5 MLM entity - fine-tuned 47.80% 58.41% 23.22%

Llama-3.1-8B prompting 85.63% 90.74% 86.43%
DeepSeek-R1 prompting 98.87% 97.00% 93.00%

Word2Vec (baseline) 27.88% 34.42% 11.61%
GLiNER NEC 72.36% 60.49% 51.60%

Table 5: Compensated Accuracies

Note that while this table should reflect the true performance of the tested approaches
better than Table 3, these results are still subject to large uncertainty due to the small
sample size of 100 test instances. Our crude method of scaling the values by a factor
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calculated from the ratio of the original and manually corrected accuracy of one model
caused the accuracy of T5 on FIGER-coarse to be slightly larger than 100%, which of
course is not really possible.

5.4 Context Relevance
In the following we will try to gain insight into what information is most important to
classify the entity correctly.

5.4.1 Relevance of specific words in the input sentence
We perform the experiment described in Section 4.2 on the fine-tuned NLI model in
order to determine which parts of the context are most relevant in accurately predicting
the correct class. In the following, we will look at some hand-picked example sentences,
where masking out any of the words marked in red will result in a mis-prediction. The
entity to be classified is highlighted in bold text:

Example 1

The 1923 Stanley Cup Final was contested by the NHL champion Ottawa Senators
and the WCHL champion Edmonton Eskimos.

Entity: Edmonton Eskimos, Correct label: organization

When replacing any of the red words with [blank] the model will predict the label person
instead.

In this example, context knowledge about the Stanley Cup is required to know that
it is a contest between teams and not between individuals. Without this knowledge,
‘Ottawa Senators’, and ‘Edmonton Eskimos’ may just as well be unconventional names.
Thus, the prediction is close enough that seemingly random disturbances lead to a mis-
prediction in this setting.

Example 2

Bard is a town and comune in the Aosta Valley region of northwestern Italy.

Entity: Italy, Correct label: location

When replacing any of the red words with [blank] the model will predict the label
organization instead.

From our datasets, we see that countries are often a special case as they can act as both
a location and an organization depending on the context in which they are found. In
this case the location label is correct. However, just like in the previous example, slight
disturbances in the input can result in mis-prediction.

Example 3

He returned to Club Africain shortly afterwards, and is now Head Coach of
Jendouba Sport in Tunisia, recently gaining promotion to Ligue 1.

Entity: Jendouba Sport, Correct label: organization
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When replacing any of the red words with [blank] the model will predict the label person
instead.

This example is interesting as it can be explained intuitively. When the preposition ‘of’
is missing, the relation between ‘Head Coach’ and ‘Jendouba Sport’ is unclear. It may
therefore be interpreted as ‘Head Coach Jendouba Sport’, where ‘Jendouba Sport’ is
the name of the coach, thus leading to a mis-prediction as person.

Example 4

In Canada, the term Commander-in-Chief of the Canadian Forces ( in French:
Commandant en chef des Forces canadiennes ) can refer to both the position
of supreme commander of the country ‘s armed forces and to the title granted
to the viceroy.

Entity: Canada, Correct label: location

When replacing any of the red words with [blank] the model will predict the label
organization instead.

This is another example of the country ambiguity referenced in Example 2. In this case
word ‘In’ is important to identify Canada as a place rather than a political/military
actor in this sentence’s context.

5.4.2 Relevance of the surrounding context compared to the entity itself
The ‘T5 MLM entity’ has the entity itself masked thus only having the context of the
entity as input. While it outperforms the two other models on CoNLL for probably
unrelated reasons already described in Section 5.2.1 it falls behind on FIGER-coarse
by 13% and is quite similar to the other two T5 approaches on FIGER-coarse. This
suggests that while the entity itself does play a role, the context of the entity might be
much more important to the T5 model, at least if presented with class representatives
instead of the actual entity.

The Word2Vec model uses only the entity itself as input for its classification, having no
information about the surrounding context. While its achieved accuracy is significantly
higher than random guessing it is not able to compete with any of the other approaches
we explored. This is in part due to the high number of multi-token entities, for which no
embeddings exist and which are therefore mis-predicted. Additionally, the improvement
of the Word2Vec approach when compared to random guessing is higher for the more
fine-grained FIGER-fine dataset. We hypothesize that this is due to the representatives
within each class being closer to each other in the embedding space when using more
fine-grained labels.

These results confirm that the entity itself carries sufficient information to enable correct
classification in some cases. The large gap in the accuracies achieved with the Word2Vec
approach when compared with our other approaches can be explained as a combination
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of the missing context and the previously mentioned drawbacks of the approach like
lack of support for multi-word entities and missing embeddings.
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6 Discussion and Outlook
All in all, we learned about both the effectiveness of our different NER and NEC
approaches and the evaluation methods used to test them.

6.1 NLP T5 task formulations
We can conclude that formulating NEC as a different NLP task for the T5 model
does indeed work and yields good results, especially after fine-tuning, with the NLI
formulation being the most promising one. Depending on the dataset and label set used
the MLM task formulations also show some merit, most notably in a zero-shot scenario.

However, these approaches have also some serious limitations when it comes to efficiency,
the size of the label set they are able to handle, and the exact nature of the label set. For
each entity, they require one or more tests for each label which does not scale well for
larger label sets. The labels also have to be a good fit for these task formulations, with
more abstract labels (like ‘Miscellaneous’) or too similar labels being rather problematic.

Possible future work might include experiments with and fine-tuning of T5 models other
than the base variant, like the large variant, the 11b variant, or variants that are already
more specifically trained for the tasks we would use them for (e.g. the XXL true NLI
variant of T5).

Another interesting future experiment might be to fine-tune T5 on different datasets
and measure how this fine-tuning transfers to different datasets that use different label
sets. In this report, we did all our fine-tuning on the FIGER-coarse dataset and then
evaluated the resulting models on all three datasets. It might prove interesting to have
different models fine-tuned on CoNLL and FIGER-fine to find out which dataset is
best suited for training given that the model is evaluated on a different dataset with a
different set of labels.

6.2 Regarding our hypotheses
We were able to successfully confirm or deny all of our three hypotheses described in
Section 4.3.

While fine-tuning resulted in major improvements in model performance we also saw
some good accuracies for our two MLM approaches on some datasets in a zero-shot
setting. Although it may not be a strict requirement, fine-tuning still resulted in much-
improved numbers making it, depending on the expectations, relatively important for
our custom task formulations.

When considering that FIGER-fine has many more labels than the other datasets
making it a lot harder to perform well by chance Word2Vec indeed performed better on
the more fine-grained dataset relatively speaking, while the T5 models much preferred
a more coarse granularity as we predicted.

Contrary to our expectations the fine-tuning performed on FIGER-coarse resulted in
sizeable performance improvements on the other datasets which use different label sets
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as well. While the fine-tuned models still performed best when using the same label
set as they were fine-tuned with, they were definitely able to transfer their knowledge
gained from fine-tuning onto different label sets.

6.3 Competitiveness of Large Language Models in NER tasks
We found that LLMs are very good at NER and NEC tasks, with DeepSeek-R1 having
the overall best performance compared to all our approaches, without any required fine-
tuning. While LLMs provide a very good performance they are however less efficient
than more specialized models. Especially the use of reasoning models is rather excessive
for this task.

We hypothesize that a larger non-reasoning language model such as GPT-4o or
DeepSeek-V3 (DeepSeek-AI 2024) can achieve similar results with much quicker
response times since it does not have to output the entire thought process behind each
predicted label.

Our results are a demonstration of the suitability of LLMs as a general solution for
NLP tasks.

6.4 Poor dataset quality
We observed that the datasets we used often include oddities like cut-off sentences and
often mislabel entities as well. We have mentioned these reliability issues in Section 2.2.1,
Section 2.2.3 and Section 5.3. This heavily impacts our accuracy metrics since even
a perfect NER model would not be able to achieve 100% accuracy on an erroneous
dataset. Possible solutions would be to either search for different more reliable datasets
or to manually annotate CoNLL and FIGER. The latter would be feasible at least for
our evaluation sets which for each dataset only consists of 100 instances.
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A Appendix
A.1 FIGER - list of all labels
This is a list of all labels used in our FIGER dataset evaluations (excluding quotations
marks and commas):

FIGER-coarse: ‘person’, ‘organization’, ‘location’, ‘product’, ‘art’, ‘event’, ‘building’

FIGER-fine: ‘actor’, ‘architect’, ‘artist’, ‘athlete’, ‘author’, ‘coach’, ‘director’, ‘doctor’,
‘engineer’, ‘monarch’, ‘musician’, ‘politician’, ‘religious leader’, ‘soldier’, ‘terrorist’, ‘air-
line’, ‘company’, ‘educational institution’, ‘fraternity sorority’, ‘sports league’, ‘sports
team’, ‘terrorist organization’, ‘government agency’, ‘government’, ‘political party’,
‘educational department’, ‘military’, ‘news agency’, ‘city’, ‘country’, ‘county’, ‘province’,
‘railway’, ‘road’, ‘bridge’, ‘body of water’, ‘island’, ‘mountain’, ‘glacier’, ‘astral body’,
‘cemetery’, ‘park’, ‘engine’, ‘airplane’, ‘car’, ‘ship’, ‘spacecraft’, ‘train’, ‘camera’, ‘mobile
phone’, ‘computer’, ‘software’, ‘game’, ‘instrument’, ‘weapon’, ‘film’, ‘play’, ‘written
work’, ‘newspaper’, ‘music’, ‘attack’, ‘election’, ‘protest’, ‘military conflict’, ‘natural
disaster’, ‘sports event’, ‘terrorist attack’, ‘airport’, ‘dam’, ‘hospital’, ‘hotel’, ‘library’,
‘power station’, ‘restaurant’, ‘sports facility’, ‘theater’, ‘point in time’, ‘color’, ‘award’,
‘educational degree’, ‘title’, ‘law’, ‘ethnicity’, ‘language’, ‘religion’, ‘god’, ‘chemical
thing’, ‘biological thing’, ‘medical treatment’, ‘disease’, ‘symptom’, ‘drug’, ‘body part’,
‘living thing’, ‘animal’, ‘food’, ‘website’, ‘broadcast network’, ‘broadcast program’, ‘tv
channel’, ‘currency’, ‘stock exchange’, ‘algorithm’, ‘programming language’, ‘transit
system’, ‘transit line’

A.2 Accuracy after 100 Epochs of Fine-tuning
Table Table 6 shows the non-corrected accuracies when using the model variants trained
for the full 100 epochs. For almost all test cases we observe significantly worse accuracies
than when stopping at the lowest point in the loss curve. The two exceptions occur
with the T5 MLM entity model where there are slight improvements in the accuracy
on the CoNLL and FIGER-coarse datasets.

Model CoNLL FIGER-coarse FIGER-fine
T5 NLI - fine-tuned 54.52% 61.48% 22.32%

T5 MLM label - fine-tuned 36.16% 74.31% 15.00%
T5 MLM entity - fine-tuned 41.81% 60.00% 16.00%

Table 6: Accuracy of fine-tuned models after 100 epochs in
percent.

A.3 Examples from the Dataset Reliability Section
These examples and more can be found in the NEC evaluation logs in our git project.
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A.3.1 GLiNER
Incomplete sentence instance example:

Instance 23:
Sentence: 52) v Worcestershire.
Entity: Worcestershire
True Label(s): organization
Predicted Label: location

DeepSeek-R1 predictions we ruled as false:

Instance 16:
Sentence: In Bistrita: Gloria Bistrita( Romania) 2 Valletta( Malta) 1
Entity: Gloria Bistrita
True Label(s): organization
Predicted Label: person

Instance 55:
Sentence: Prime Minister Benjamin Netanyahu 's government, which took office in
June, has said it will not allow the Authority, set up under a 1993 interim peace
deal to control parts of the Gaza Strip and West Bank, to operate in Jerusalem.
Entity: Authority
True Label(s): organization
Predicted Label: miscellaneous

A.3.2 FIGER-coarse
Ambiguity example:
Instance 46:
Sentence: He cites his musical influences in metal as: Manowar, Iron Maiden,
Gamma Ray, Angra, Helloween, Running Wild, Metallica, Megadeth, Judas Priest,
Nightwish, Spinal Tap, Iced Earth, Dio.
Entity: Dio
True Label(s): person
Predicted Label: organization

Target entity not in sentence example:
Instance 19:
Sentence: To some extent he agreed with Fritz Fischer 's assessment that the
differences between Imperial, Weimar and Nazi foreign policy were of degree
rather than kind.
Entity: Nazi Germany
True Label(s): location
Predicted Label: event

False model prediction example:
Instance 38:
Sentence: The 1923 Stanley Cup Final was contested by the NHL champion Ottawa
Senators and the WCHL champion Edmonton Eskimos.
Entity: Edmonton Eskimos
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True Label(s): organization
Predicted Label: event

A.3.3 FIGER-fine
Ambiguity examples:
Instance 4:
Sentence: The family seat was Bantry House, near Bantry, in County Cork, Ireland.
Entity: Bantry
True Label(s): city
Predicted Label: town

Instance 39:
Sentence: It stayed there for two weeks, before being dethroned by Boyz II Men
's " End of the Road ".
Entity: End of the Road
True Label(s): music
Predicted Label: songs

Wrong labeling example:
Instance 21:
Sentence: Barrow was born in Wolfskin District, Oglethorpe County, Georgia on
October 18, 1852.
Entity: Georgia
True Label(s): province
Predicted Label: state
Georgia joined the United States in 1788. The U.S. does not have provinces — only
states and territories.

False model predictions examples:
Instance 16:
Sentence: Holger Apfel ( born December 29, 1970 in Hildesheim, Lower Saxony ) is
the leader of the right-extremist National Democratic Party of Germany in Saxony
and has served as a member of the Saxon Parliament since 2004.
Entity: Landtag of Saxony
True Label(s): government
Predicted Label: government agency

Instance 63:
Sentence: " Veronica Sawyer " ( originally by Edna 's Goldfish ) featured on
Fame, Fortune and Fornication.
Entity: Fame, Fortune and Fornication
True Label(s): music
Predicted Label: broadcast program  

Instance 90:
Sentence: There are approximately eight hundred Gyu-Kaku locations within Japan,
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and locations have also been opened in the United States ( New York City,
California, Hawaii ), Hong Kong, Taipei, Indonesia and Singapore.
Entity: Indonesia
True Label(s): country, government
Predicted Label: predicted_class
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