diff --git a/project/minimal_examples/README.md b/project/minimal_examples/README.md index 627c8ff6736ea7552220f77a6803138426ba6009..5207370b65a14ae7c34ea19ad8f89a8a822efd5c 100644 --- a/project/minimal_examples/README.md +++ b/project/minimal_examples/README.md @@ -22,24 +22,28 @@ source venv/bin/activate pip install -r requirements.txt ``` -## 💻 Usage: `extract_features.py` +## `extract_features.py` +### 💻 Usage ```bash python extract_features.py ``` +### 📊 Outputs This will extract the RGB values from the image [`figures/examples_from_dataset/banana.jpg`](../figures/examples_from_dataset/banana.jpg) and create the following files: - `features-banana.txt` :arrow_right: contains the features (RGB values) of the image - `features-banana-flattened.txt` :arrow_right: contains the flattened features (RGB values) of the image - `features-banana-resized.txt`:arrow_right: contains the features (RGB values) of the banana image after resizing it to 50x50 pixels - `features-banana-resized-flattened.txt`:arrow_right: contains the flattened features (RGB values) of the banana image after resizing it to 50x50 pixels -## 💻 `apply_filters.py` +## `apply_filters.py` +### 💻 Usage ```bash python apply_filters.py ``` +### 📊 Outputs This will apply the following filters to the image [`figures/examples_from_dataset/banana.jpg`](../figures/examples_from_dataset/banana.jpg) and create the following files in the folder [`figures/examples_from_dataset/`](../figures/examples_from_dataset/): - `banana-edges.jpg` :arrow_right: contains the image with applied Canny edge detection filter