import corpus from random import shuffle import sent_rating_feature import ngram_feature import numpy as np from sklearn import svm from sklearn import tree from sklearn.model_selection import cross_val_score import postagger def create_vector(corpus_instance, vocabulary=None, pos_vocabulary=None): """ Calls all feature extraction programms and combines resulting arrays to a single input vector (for a single corpus instance) Example for corpus instance: OrderedDict([('LABEL', '0'), ('FILENAME', '36_19_RPRRQDRSHDV6J.txt'), ('STARS', '5.0'), ('TITLE', etc. """ f1 = ngram_feature.extract(corpus_instance, vocabulary) f2 = postagger.extract(corpus_instance, pos_vocabulary) f4 = sent_rating_feature.extract(corpus_instance) print(f2) print(len(f2)) return np.concatenate((f1, f2, f4)) def train_multiple(classifiers, train_input, train_labels): for classifier in classifiers: classifier.fit(train_input, train_labels) if __name__ == '__main__': corpus = corpus.read_corpus("corpus_shuffled.csv") # split data set 80:20 train_set = corpus[:1000] test_set = corpus[1000:] # vocabularies unigram_vocab = ngram_feature.get_vocabulary(train_set, 1) bigram_vocab = ngram_feature.get_vocabulary(train_set, 2) # pos_bags pos_bigram_vocab = postagger.get_pos_vocabulary(train_set) #print(pos_bigram_vocab) #already lookin' good # inputs: train_inputs = [create_vector(el, unigram_vocab, pos_bigram_vocab) for el in train_set] # 1000 vectors test_inputs = [create_vector(el, unigram_vocab, pos_bigram_vocab) for el in test_set] # 254 vectors # labels train_labels = np.array([int(el['LABEL']) for el in train_set]) # 1000 labels test_labels = np.array([int(el['LABEL']) for el in test_set]) # 254 labels print("Number of train samples: {}".format(len(train_inputs))) print("Number of features per train sample: {}".format(len(train_inputs[0]))) print("Unigram vocab size: {}".format(len(unigram_vocab))) print("Bigram vocab size: {}".format(len(bigram_vocab))) print("POS-Bigram vocab size: {}".format(len(pos_bigram_vocab))) # TODO Pickle/outsource # ML # init svm_clf = svm.SVC(C=200.0) # large C: smaller-margin hyperplane tree_clf = tree.DecisionTreeClassifier() # training train_multiple([svm_clf, tree_clf], train_inputs, train_labels) # validation svm_score = cross_val_score(svm_clf, train_inputs, train_labels, cv=5).mean()#, scoring='f1') tree_score = cross_val_score(tree_clf, train_inputs, train_labels, cv=5).mean()#, scoring='f1') print("\n--Cross Validation Scores-- ") print("\nSVM: {}".format(svm_score)) print("\nTree: {}".format(tree_score)) # testing # print("\nSVM: Score on test Data:") # print(svm_clf.score(test_inputs, test_labels)) # print("\nDTree: Score on test Data:") # print(tree_clf.score(test_inputs, test_labels)) # predictions = svm_classifier.predict(train_inputs)