import corpus
import sent_rating_feature
import ngram_feature
import pos_feature
import punctuation_feature
import surface_patterns
import numpy as np
from sklearn import svm
from sklearn import tree
from sklearn import naive_bayes
from sklearn import linear_model
from sklearn.model_selection import cross_val_score
import time
import pickle

def extract_features(training_set, test_set):

    # vocabularies
    unigram_vocab = ngram_feature.get_vocabulary(train_set, 'REVIEW', 1)
    bigram_vocab = ngram_feature.get_vocabulary(train_set, 'REVIEW', 2)
    trigram_vocab = ngram_feature.get_vocabulary(train_set, 'REVIEW', 3)
    pos_bigram_vocab = pos_feature.get_pos_vocabulary(train_set)
    surface_bigram_vocab = ngram_feature.get_vocabulary(train_set, 'SURFACE_PATTERNS', 2)

    # inputs:
    print("------Feature Extraction------\n")
    train_inputs = [create_vector(el, unigram_vocab, pos_bigram_vocab, surface_bigram_vocab)
                    for el in train_set]  # 1000 vectors
    test_inputs = [create_vector(el, unigram_vocab, pos_bigram_vocab, surface_bigram_vocab)
                   for el in test_set]  # 254 vectors

    # stats
    print("Number of train samples:          {}".format(len(train_inputs)))
    print("Unigram vocab size:               {}".format(len(unigram_vocab)))
    print("Bigram vocab size:                {}".format(len(bigram_vocab)))
    print("Trigram vocab size:               {}".format(len(trigram_vocab)))
    print("POS-Bigram vocab size:            {}".format(len(pos_bigram_vocab)))
    print("SP-Bigram vocab size:             {}".format(len(surface_bigram_vocab)))
    print("Total features per train sample:  {}".format(len(train_inputs[0])))
    print("---> Duration Feature Extraction: {} sec.\n".format(int(time.time()-start_time)))

    return train_inputs, test_inputs


def create_vector(corpus_instance, vocabulary=None, pos_vocabulary=None, surface_vocabulary=None):
    """
    Calls all feature extraction programms and combines
    resulting arrays to a single input vector (for a
    single corpus instance)
    Example for corpus instance: OrderedDict([('LABEL', '0'), ('STARS', '5.0'), etc.
    """
    f1 = ngram_feature.extract(corpus_instance, 'REVIEW', vocabulary)
    f2 = pos_feature.extract(corpus_instance, pos_vocabulary)
    f3 = ngram_feature.extract(corpus_instance, 'SURFACE_PATTERNS', surface_vocabulary)
    f4 = sent_rating_feature.extract(corpus_instance)
    f5 = punctuation_feature.extract(corpus_instance)

    return np.concatenate((f1, f2, f3, f4, f5))


def train_multiple(classifiers, train_input, train_labels):
    for classifier in classifiers:
        classifier.fit(train_input, train_labels)


def validate_multiple(classifiers, train_input, train_labels):
    print("\n------Cross Validation------")

    for classifier in classifiers:
        print("\n{}".format(classifier))

        accuracy = cross_val_score(classifier, train_inputs, train_labels, cv=5, scoring='accuracy').mean()
        f1 = cross_val_score(classifier, train_inputs, train_labels, cv=5, scoring='f1').mean()
        
        print("\nAccuracy: {}, F1-Score: {}\n".format(accuracy, f1))


if __name__ == '__main__':
    start_time = time.time()

    corpus = corpus.read_corpus("corpus_shuffled.csv")
    extended_corpus = surface_patterns.extract_surface_patterns(corpus, 1000)

    # split data set 80:20
    train_set = extended_corpus[:1000]
    test_set = extended_corpus[1000:]

    train_inputs, train_labels = [], []
    test_inputs, test_labels = [], []

    re_extract = True # change to False if features are unchanged since previous run

    if re_extract == True:

        # inputs (x)
        train_inputs, test_inputs = extract_features(train_set, test_set)

        # labels (y)
        train_labels = np.array([int(el['LABEL']) for el in train_set])  # 1000 labels
        test_labels = np.array([int(el['LABEL']) for el in test_set])  # 254 labels

        # save to pickle
        pickle.dump([train_inputs, train_labels, test_inputs, test_labels], open("vectors.pickle", "wb"))

    else:
        # load from pickle
        v = pickle.load(open("vectors.pickle", "rb"))
        train_inputs, train_labels = v[0], v[1]
        test_inputs, test_labels = v[2], v[3]


    # Machine Learning

    # init
    svm_clf = svm.SVC(C=500.0, kernel='linear') # large C: smaller-margin hyperplane
    tree_clf = tree.DecisionTreeClassifier()
    nb_clf = naive_bayes.MultinomialNB()
    lr_clf = linear_model.LogisticRegression()

    # training
    train_multiple([svm_clf, tree_clf], train_inputs, train_labels) #, nb_clf, lr_clf
    print("---> Duration Training: {} sec.\n".format(int(time.time()-start_time)))

    # validation
    validate_multiple([svm_clf, tree_clf], train_inputs, train_labels) #, nb_clf, lr_clf
    print("---> Duration CV: {} sec.".format(int(time.time()-start_time)))


    # testing
    # print("\nSVM: Score on test Data:")
    # print(svm_clf.score(test_inputs, test_labels))
    # predictions = svm_classifier.predict(train_inputs)