import corpus import sent_rating_feature import ngram_feature import pos_feature import punctuation_feature import surface_patterns import contrast_feature import numpy as np from sklearn import svm from sklearn import tree from sklearn import naive_bayes from sklearn import linear_model from sklearn.model_selection import cross_val_score, GridSearchCV import time import pickle def extract_features(training_set, test_set): # vocabularies n_gram_vocab = ngram_feature.get_vocabulary(train_set, 'REVIEW', (1,1)) # n1==n2! pos_bigram_vocab = pos_feature.get_pos_vocabulary(train_set) surface_bigram_vocab = ngram_feature.get_vocabulary(train_set, 'SURFACE_PATTERNS', (3,3)) # inputs: print("------Feature Extraction------\n") train_inputs = [create_vector(el, n_gram_vocab, pos_bigram_vocab, surface_bigram_vocab) for el in train_set] # 1000 vectors test_inputs = [create_vector(el, n_gram_vocab, pos_bigram_vocab, surface_bigram_vocab) for el in test_set] # 254 vectors # stats print("Number of train samples: {}".format(len(train_inputs))) print("N_gram vocab size: {}".format(len(n_gram_vocab))) print("POS-Bigram vocab size: {}".format(len(pos_bigram_vocab))) print("SP-Bigram vocab size: {}".format(len(surface_bigram_vocab))) print("Total features per train sample: {}".format(len(train_inputs[0]))) print("---> Duration Feature Extraction: {} sec.\n".format(int(time.time()-start_time))) return train_inputs, test_inputs def create_vector(corpus_instance, vocabulary=None, pos_vocabulary=None, surface_vocabulary=None): """ Calls all feature extraction programms and combines resulting arrays to a single input vector (for a single corpus instance) Example for corpus instance: OrderedDict([('LABEL', '0'), ('STARS', '5.0'), etc. """ f1 = ngram_feature.extract(corpus_instance, 'REVIEW', vocabulary) f2 = pos_feature.extract(corpus_instance, pos_vocabulary) f3 = ngram_feature.extract(corpus_instance, 'SURFACE_PATTERNS', surface_vocabulary) f4 = sent_rating_feature.extract(corpus_instance) f5 = punctuation_feature.extract(corpus_instance) f6 = contrast_feature.extract(corpus_instance) return np.concatenate((f1, f2, f3, f4, f5, f6)) def train_multiple(classifiers, train_inputs, train_labels): for classifier in classifiers: classifier.fit(train_inputs, train_labels) def validate_multiple(classifiers, train_inputs, train_labels): print("\n-------Cross Validation-------") for classifier in classifiers: print("\n{}".format(classifier)) accuracy = cross_val_score(classifier, train_inputs, train_labels, cv=3, scoring='accuracy').mean() f1 = cross_val_score(classifier, train_inputs, train_labels, cv=3, scoring='f1').mean() print("\nAccuracy: {}, F1-Score: {}\n".format(accuracy, f1)) def get_best_params(classifier, param_grid, train_inputs, train_labels): print("{} \n".format(classifier)) grid_search = GridSearchCV(classifier, param_grid, cv=3) grid_search.fit(train_inputs, train_labels) print("Best parameters: {}".format(grid_search.best_params_)) print("Best score: {}".format(grid_search.best_score_)) if __name__ == '__main__': start_time = time.time() corpus = corpus.read_corpus("corpus_shuffled.csv") extended_corpus = surface_patterns.extract_surface_patterns(corpus, 1000) # split data set 80:20 train_set = extended_corpus[:1000] test_set = extended_corpus[1000:] train_inputs, train_labels = [], [] test_inputs, test_labels = [], [] re_extract = True # change to False if features are unchanged since previous run if re_extract == True: # inputs (x) train_inputs, test_inputs = extract_features(train_set, test_set) # labels (y) train_labels = np.array([int(el['LABEL']) for el in train_set]) # 1000 labels test_labels = np.array([int(el['LABEL']) for el in test_set]) # 254 labels # save to pickle #pickle.dump([train_inputs, train_labels, test_inputs, test_labels], open("vectors.pickle", "wb")) else: # load from pickle v = pickle.load(open("vectors.pickle", "rb")) train_inputs, train_labels = v[0], v[1] test_inputs, test_labels = v[2], v[3] # Machine Learning # init svm_clf = svm.SVC() # best: C=0.1, gamma=0.001, kernel='linear' tree_clf = tree.DecisionTreeClassifier() nb_clf = naive_bayes.MultinomialNB() lr_clf = linear_model.LogisticRegression() # validation #validate_multiple([svm_clf, tree_clf, nb_clf, lr_clf], train_inputs, train_labels) #print("---> Duration CV: {} sec.".format(int(time.time()-start_time))) # tuning svm_param_grid = {'C': [0.001, 0.01, 0.1, 1, 10], 'gamma' : [0.001, 0.01, 0.1, 1], 'kernel' : ['linear', 'rbf', 'poly']} tree_param_grid = {'criterion' : ['gini', 'entropy'], 'max_depth': [9, 6, 3, None], 'max_features': [1, 2, 3, 4, 5, 6, 7, 8, 9, 500], 'min_samples_leaf': [1, 2, 3, 4, 5, 6, 7, 8, 9]} nb_param_grid = {'alpha' : [0, 0.5, 1.0]} lr_param_grid = {'penalty' : ['l1', 'l2'], 'C' : [0.001, 0.01, 0.1, 1, 10]} get_best_params(svm_clf, svm_param_grid, train_inputs, train_labels) get_best_params(tree_clf, tree_param_grid, train_inputs, train_labels) get_best_params(nb_clf, nb_param_grid, train_inputs, train_labels) get_best_params(lr_clf, lr_param_grid, train_inputs, train_labels) print("---> Duration param search: {} sec.".format(int(time.time()-start_time))) # training #train_multiple([svm_clf, tree_clf, nb_clf, lr_clf], train_inputs, train_labels) #print("---> Duration Training: {} sec.\n".format(int(time.time()-start_time))) # testing # print("\nSVM: Score on test Data:") # print(svm_clf.score(test_inputs, test_labels)) # predictions = svm_classifier.predict(train_inputs)