import torch import numpy as np import matplotlib.pyplot as plt import pathlib hist_path = pathlib.Path('hist') # list of loss, loss of type float in training and in validation / test actor_only_hist = torch.load(hist_path/'model_actor_only_val_rouge_hist.pt', map_location="cpu") CE_hist = torch.load(hist_path/'model_CE_val_rouge_hist.pt', map_location="cpu") num_epochs = 2 plt.title("Validation Rouge vs. Number of Training Epochs") plt.xlabel("Training Epochs") plt.ylabel("Validation Rouge") plt.plot(range(1,num_epochs+1),actor_only_hist,label="Actor Only") plt.plot(range(1,num_epochs+1),CE_hist,label="Cross Entropy") plt.ylim((min(actor_only_hist + CE_hist), max(actor_only_hist + CE_hist))) plt.xticks(np.arange(0, num_epochs, 1000)) # plt.legend() plt.show()