import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification ### from models.py from hatexplain.models import * device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain-rationale-two") model = \ Model_Rational_Label.from_pretrained( "Hate-speech-CNERG/bert-base-uncased-hatexplain-rationale-two" ) model = model.to(device) inputs = tokenizer('He is a great guy', return_tensors="pt").to(device) prediction_logits, _ = model(input_ids=inputs['input_ids'],attention_mask=inputs['attention_mask']) softmax = torch.nn.Softmax(dim=1) probs = softmax(prediction_logits) print(f"Normal: {probs[0][0]}\nHatespeech: {probs[0][1]}")