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Abstract

Word embeddings have been shown to contain biases against certain social groups such as women
or Black people, which can lead to discriminatory outputs in downstream tasks. In recent years,
research on the measurement and reduction of bias in word embeddings has been a growing field,
but has mainly been focused on English embeddings and gender bias. This thesis examines origin
bias in German word embeddings.

I differentiated origin bias between bias against people of Turkish, Polish, and Italian origin for
a more fine-grained analysis. To quantify the bias contained in German embeddings, I adapted
the Word Embedding Association Test (Caliskan et al., 2017), which measures the association of
first names with pleasant versus unpleasant terms using a statistical test. For this test, I created
a new data set of typically German, Turkish, Polish, and Italian first names based on various
statistics.

To mitigate origin bias in German embeddings, I adapted two debiasing methods: Hard Debiasing
(Bolukbasi et al., 2016) and DD-GloVe (An et al., 2022). Hard Debiasing is a post-processing
approach which reduces bias in embeddings by identifying which components of an embedding are
biased based on defining word pairs, and then removing these components. DD-GloVe modifies
the loss functions of GloVe to encourage embeddings to become bias-reduced at train time based
on bias-free dictionary definitions.

My results showed that German word embeddings do contain origin bias, but also that this is
not the case for all embeddings and biases analysed. GloVe embeddings contained considerably
higher biases than fastText embeddings, which were only biased against people of Turkish origin.
Debiasing with DD-GloVe did not result in a decrease in bias, whereas Hard Debiasing was
able to entirely remove statistically significant bias in some cases and slightly mitigate it in
others.

I concluded that analysing bias in more fine-grained categories yields new insights into the precise
nature of bias in word embeddings, and that adapting debiasing methods to different bias attributes
or languages is challenging due to the seed words which need to be defined for these methods.
I encourage future work to focus on methods for non-gender bias, to ensure reproducibility of
results, to take the issue of seed word frequency into consideration and to carefully examine how
bias can be defined.
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Zusammenfassung

Die Forschung der vergangen Jahre hat gezeigt, dass Worteinbettungen Vorurteile gegenüber
bestimmten sozialen Gruppen wie Frauen oder Schwarzen Menschen enthalten, was zu dis-
kriminierendem Verhalten von Algorithmen führen kann. Es existieren mittlerweile bereits ei-
nige Arbeiten zur Analyse und Reduktion von Bias in Worteinbettungen, jedoch wurde sich
bisher hauptsächlich auf englische Worteinbettungen und geschlechtsspezifischen Bias konzen-
triert. In der vorliegenden Arbeit untersuche ich nun Herkunftsbias in deutschen Word Embed-
dings.

Für eine differenziertere Analyse unterschied ich zwischen Bias gegenüber Menschen türkischer,
polnischer und italienischer Herkunft. Um den Bias in deutschen Worteinbettungen zu quantifizieren,
adaptierte ich den Word Embedding Association Test (Caliskan et al., 2017), welcher die Assoziation
von Vornamen mit positiven versus negativen Begriffen mithilfe eines statistischen Tests misst. Für
diesen Zweck erstellte ich einen neuen Datensatz mit typisch deutschen, türkischen, polnischen
und italienischen Vornamen auf der Grundlage diverser Statistiken.

Um den Herkunftsbias in deutschen Worteinbettungen zu verringern, adaptierte ich zwei Methoden
zur Biasreduktion: Hard Debiasing (Bolukbasi et al., 2016) sowie DD-GloVe (An et al., 2022).
Hard Debiasing ist ein Postprocessing-Ansatz, welcher Bias in Embeddings reduziert, indem er
mithilfe von Definitionswortpaaren ermittelt, welche Worteinbettungskomponenten Bias enthalten
und diese Komponenten dann entfernt. DD-GloVe hingegen verändert die Verlustfunktionen
von GloVe so, dass die Worteinbettungen während der Trainingszeit auf der Grundlage von
Wörterbuchdefinitionen in ihrem Bias reduziert werden.

Meine Resultate zeigten, dass deutsche Worteinbettungen tatsächlich Herkunftsbias enthalten, al-
lerdings nicht für alle betrachteten Worteinbettungen und Nationalitäten. GloVe-Worteinbettungen
enthielten einen wesentlich höheren Bias als fastText-Worteinbettungen, bei denen ein Bias nur für
türkische Namen messbar war. Die DD-GloVe-Methode führte nicht zu einer Reduktion des Bias,
wohingegen die Hard-Debiasing-Methode statistisch signifikanten Bias in manchen Fällen vollstän-
dig beseitigen und in anderen Fällen leicht abschwächen konnte.

Ich kam zu dem Schluss, dass eine feingliedrigere Bias-Analyse neue Einblicke in die genauen
Eigenarten von Bias in Worteinbettungen liefern kann und dass die Anpassung von Debiasing-
Methoden an andere Bias-Attribute oder andere Sprachen aufgrund der für diese Methoden zu
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definierenden sog. Seed Words eine Herausforderung darstellt. Für zukünftige Arbeiten empfehle
ich, sich nicht nur auf Methoden für geschlechtsspezifischen Bias zu beschränken und sich auf
die Reproduzierbarkeit der Ergebnisse zu konzentrieren. Des Weiteren empfehle ich, Probleme
im Zusammenhang mit der Häufigkeit von sog. Seed Words verstärkt zu berücksichtigen sowie
sorgfältig zu prüfen, wie Bias definiert werden sollte.
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1 Introduction

How Bias Affects Us In a 2003 sociological field study on racial discrimination in the labour
market, Bertrand and Mullainathan (2004) sent close to 5,000 fictitious resumes to over 1,300
different job listings. For each resume sent, a virtually identical one was sent to the same job, except
that this duplicate resume differed in the applicant’s race and minor additional details. Resumes
with White-sounding names received 50 % more callbacks than their Black-sounding counterparts.
Whether or not the employers claimed to be “equal employers” did not make a significant difference.
The basic idea of this study is shown in Figure 1.

Figure 1: Illustration summarizing field study by Bertrand and Mullainathan (2004) on
discrimination on the labour market. 5000 virtually identical resumes except in race were
sent to the same job listings, but callback rates were significantly worse for Black-sounding
names.

This study constitutes a striking example of prejudices still present in modern-day society and
how these prejudices can be unconscious to the people propagating them. Humans, intentionally
or not, can be harmfully biased towards members of a group with certain protected attributes
(such as race, gender or religion) over other groups.

Since humans are biased in such ways, it is perhaps unsurprising that technologies created by
humans exhibit the same biases. In 2016, Reuters garnered public attention by exposing Amazon’s
planned recruitment algorithm to be biased against women: The algorithm was rejecting resumes
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Figure 2: Illustration of Amazon’s former recruitment algorithm as explained by Reuters
(Dastin, 2018). Treatment of women’s (pink) vs. men’s (blue) applications.

which contained language hinting towards the applicant being female (Dastin, 2018). Figure 2
shows the problematic behaviour of this algorithm.

This study illustrates how biased algorithms can have unwelcome real-world consequences, but is
just one of many troubling discoveries made in recent years. Other cases more relevant to the
subject matter of this thesis include how tweets in African American English are more likely to
be labelled as offensive (Sap et al., 2019), how named entity recognition systems are able to
identify male names as persons but label female names as objects or locations (Mehrabi et al.,
2020), or how automatic speech recognition systems make more mistakes for African American
speakers.

Motivation It is safe to assume that these algorithms were not created with the purpose of
outputting discriminatory results. Rather, the reason for this behaviour is usually that they were
trained using historic and imperfect data which encodes these biases. In the Amazon example,
their algorithm used existing company data on hiring decisions, which has historically favoured men.
Wagner et al. (2015), among others, have shown that even Wikipedia, a common data source which
one might believe to be relatively neutral, contains hidden biases.

Standard computational techniques in machine learning not only reproduce stereotypes present
in their training data. This would be problematic enough, since it is misaligned with the goal
of equitable judgement defined below. However, they also amplify biases. This amplification
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can occur in various ways. Language models can make harmful patterns found in their training
data more obvious in their outputs since they are typically specifically trained to recognise and
emphasise data patterns (Ethayarajh et al., 2019). Where a human might have overlooked
biased data, an algorithm might find a strong data pattern and base its decisions on this
pattern.

Additionally, algorithms are perceived to be neutral and objective decision-making methods and as
such their output might not be questioned as much as a human’s judgement, which harbours
the danger of humans not recognizing bias where it is present in an algorithm’s output (Ajunwa,
2019). If such algorithms are then employed in real-world scenarios, they can systematically
discriminate against certain groups by assigning negative associations to those groups, under-
representing them in terms of output frequency, or producing less reliable results for users of that
group.

Briefly speaking, algorithms have the potential to reinforce harmful stereotypes. It has been
examined that this disparate impact of algorithms is not in accordance with American discrimination
law (Barocas and Selbst, 2016), and it is reasonable to assume that this observation also holds for
other national and international law. It is therefore desirable to create algorithms which produce
less biased results. In order to be able to study this subject, I now first define what exactly is
meant by “bias” within the context of this thesis.

Definitions

Definition 1: Brookings Institution (2023)

An algorithm is biased if it is not predicting its target accurately and equitably.

Definition 2: Friedman and Nissenbaum (1996)

“[C]omputer systems that systematically and unfairly discriminate against certain individuals
or groups of individuals in favor of others” are called biased.

In everyday language, bias is commonly interpreted as a personal tendency or perspective of
judgement that is sometimes unfounded (Merriam-Webster, 2023). In the field of Machine
Learning, bias is an overloaded term. It can mean statistical bias; it can also refer to the bias
term in neural networks. The bias this thesis is about, however, is algorithmic bias “of moral
import” (Friedman and Nissenbaum, 1996). In particular, I understand an algorithm, method,
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system or model to be biased if it behaves as specified by the working definitions presented
above.

Definitions of bias in word embedding research are often reductive or even remain unstated. I
further expand on this in §2.3. In this thesis, I stipulate a broad bias definition since social bias is
a complex issue. There exist some additional terms which are relevant for discussing bias in this
context, and I now briefly introduce these terms.

Humans group people according to characteristics like race, ethnicity, gender, social class, sexual
orientation, nationality, religion, or disability (Lai et al., 2013). Such characteristics which “may
not be used as the basis for [algorithmic] decisions” (Fletcher et al., 2020), as agreed upon by law
or societal standards, are often called protected attributes.

Stereotypes are people’s “beliefs about the characteristics, attributes, and behaviors of members
of certain groups. [...] [T]hey are also theories about how and why certain attributes go together.”
(Hilton and von Hippel, 1996).

Prejudices can be defined as “feeling[s], favorable or unfavorable, toward a person or thing, prior
to, or not based on, actual experience” (Allport et al., 1954). These prejudices can be implicit,
meaning that the prejudiced person is not consciously aware of their biased view (Lai et al.,
2013).

Scope and Contribution While biased algorithms are a broad research area, this thesis is specif-
ically concerned with natural language models, a specific type of algorithms. Natural language
technologies have enjoyed great popularity and research successes in the last decades, with applica-
tions such as chat bots, machine translation, voice assistants and more enjoying wide-spread and
mainstream use(Jin et al., 2021). Addressing bias in Natural Language Processing (NLP) therefore
has the potential for making substantial real-world improvements.

A core part of almost all current language computer systems are word embeddings (Almeida
and Xexéo, 2019), i.e., vector space representations of words or other language units. Word
embeddings have many useful properties, such as the ability to compute word analogies. For
example, Mikolov et al. (2013) famously show that “man” is to “woman” as “king” is to
“queen”.

However, in the same vein, researchers have also found that embeddings contain problematic
content: the same kind of word analogy task as above also computes that “man” is to “woman”
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as “computer programmer” is to “homemaker” (Bolukbasi et al., 2016). This is an indication that
word embeddings might contain bias, i.e. that they do not fulfill their purpose of representing
words equitably (see definition 1) and instead treat different groups in a discriminatory way (see
definition 2).

In recent years, much research has been conducted on the topic of bias in word embeddings. So
far, this research has been predominantly focused on English language embeddings and gender
bias. English data is readily available and gender bias seemingly less complex than other types of
bias.1 However, bias differs across different cultures and languages (Kurpicz-Briki, 2020) and the
bias present in embeddings as well as bias mitigation methods might not necessarily be directly
transferable from English to other languages. In order to study this issue further, this thesis
examines German word embeddings.

Figure 3: Distribution of 6627 counselling requests to the Federal Anti-Discrimination
Agency. Translation of original diagram.

Similarly, there are also more protected attributes than just gender. A recent statistic (Figure 3)
by the Statista Research Department shows that by far the most common attribute for which
people in Germany experience discrimination is ethnic origin. This is the attribute I intend to
focus on in this thesis.

It should be noted that in my research I refer to origin instead of race. This is due to the fact
that in German, the term “Rasse” (race) is not generally accepted as an appropriate description
and therefore the concept of race is not normally used.2

1 It should be noted that gender bias is typically simplified to be binary, female and male. Other possible
manifestations of gender are usually not addressed.

2 See this statement of the Heidelberg Ethnology Institute on the concept and term “Rasse”: https://www.
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Research Questions I aim to answer the following three main research questions.

Research Question 1

How can origin bias be measured in static German word embeddings?

In order to analyse and mitigate bias, I first need to consider how bias can be measured, which is
a non-trivial problem. I consider the strengths and weaknesses of various bias metrics and adapt
one method to German. My hypothesis is that despite cultural differences, existing bias metrics
can be adapted to German language embeddings by substituting language data. Furthermore, I
make the fundamental assumption that bias contained in word embeddings can be captured using
mathematical methods.

Research Question 2

Are static German embeddings origin-biased?

For English embeddings, the existence of racial bias has been detected in prior work. After defining
robust bias metrics, I intend to examine whether this is also the case for German embeddings.
My hypothesis is that German embeddings contain origin bias similar to the racial bias found in
English embeddings. Additionally, it is likely that the exact nature of bias varies for subgroups of
different ethnic origin, meaning that there might not be one generalisable “origin bias” against all
people of non-German origin. Instead, there could be different biases against people from different
specific countries of origin.

Research Question 3

If German embeddings are origin-biased, how can such bias be reduced?

By now, a multitude of approaches to so-called debiasing algorithms exist (Pfisterer, 2022). I
examine multiple questions related to these methods. Do existing methods work in reducing origin
bias in German embeddings and why or why not? Are the algorithms able to remove bias according
to the initial definitions (see definitions 1 and 2) set? How do different methods compare to each
other? To answer these questions, I implement and evaluate two debiasing methods. I hypothesize
that any examined bias can be reduced by adapting existing debiasing algorithms to German origin
bias.

eth.uni-heidelberg.de/md/eth/institut/statement_zu_konzept_und_begriff_rasse_fin.pdf
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Thesis structure The remainder of this thesis is structured as follows: Chapter 2 reviews
existing literature on bias and provides additional background. In chapter 3, I explain the methods
I use to answer my research questions, give reasons for my methodological choices, and introduce
metrics, models and data sets. The results of my experiments, including tabular data and
diagrams, are presented in chapter 4 and discussed in chapter 5. Finally, chapter 6 concludes my
thesis.
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2 Related Research

In this chapter, I first give a brief outline of different static word embeddings, their significance,
and how to evaluate them semantically. I then review prior work on different bias measure-
ment and bias mitigation methods, which form the main theoretical foundation of my own
work.

2.1 Word Embeddings

Word embeddings can be understood to be “dense, distributed, fixed-length word vectors”,
built using word co-occurrence statistics as per the distributional hypothesis (Almeida and
Xexéo, 2019). The question of how best to turn language into vectors is one that has kept
computational linguists busy for the last decades and out of which many different models have
emerged.

The Role of Static Embeddings We can differentiate between two categories of embeddings.
In the earlier years of word embedding research (arguably from Bengio et al. (2003) onwards),
each distinct token is represented by its own fixed vector (Almeida and Xexéo, 2019). These are
called static embeddings. In recent years, instead of static embeddings, pre-trained contextualised
embeddings have seen wide-spread adaption across many fields in NLP (Bommasani et al., 2020),
propelled forward by the publication of the first transformer model in Vaswani et al. (2017).
Contextualised models create embeddings for a word based on the context in which it appears
and in many areas outperform static embeddings to the point where one might wonder if static
embeddings still have a place in today’s research.

Two issues of contextualised embeddings are that they are challenging to interpret (Zini and Awad,
2022; Bommasani et al., 2020) and hard to train (Li, 2020). Static embeddings, in opposition,
have the advantage of being more interpretable by humans and also being more economic in their
training time and resources.

For this reason, Bommasani et al. (2020) convert contextualized embeddings to static embeddings
for the purpose of interpretation. This enables interpretation methods for static embeddings —
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such as bias measurement — to also be applied to contextualised embeddings. In another work by
Dufter et al. (2021), the authors show that static embeddings perform at least as well as or better
than contextualised embeddings on factual knowledge tasks due to their large vocabulary. Besides,
since static embeddings were the standard for many years, it stands to reason that they are still in
use in many applications today. Considering these factors, new research on static embeddings can
still be a valuable addition to research.

In the following, I present the three most prominent static word embedding algorithms.

Word2Vec Mikolov et al. (2013) presented the pioneering Word2Vec (W2V) model, which is
one of the first to successfully learn word embeddings with a neural network architecture. The
authors devise two model architectures: Continuous Bag of Words (CBOW) and Skip-gram. Put
briefly, the CBOW training objective is to maximize the model’s likelihood of predicting target
words from their context words, and Skip-gram works vice versa, i.e. by predicting context words
from a target word (Kurpicz-Briki, 2020).

fastText FastText is an extension of Word2Vec introduced by Bojanowski et al. (2017) and
expands upon Word2Vec by training embeddings on subword tokens. This change results in
fastText embeddings excelling at capturing morphological variations of words, which is useful
for morphologically rich languages (such as German) and words which would otherwise be
outside the model’s vocabulary. This characteristic and the fact that pre-trained fastText
vectors have been publicly released in 157 languages1 makes fastText a popular embedding
choice.

GloVe Another influential work is the introduction of GloVe by Pennington et al. (2014). While
Word2Vec and fastText optimise embeddings based on the local information surrounding a word,
GloVe focuses on the global statistical information the corpus provides. It works by constructing a
co-occurrence matrix of vocabulary tokens and optimises embeddings with the goal of capturing
inter-word relationships based on this co-occurrence information. The resulting vectors have found
extensive application in a myriad of NLP tasks due to their ability to express meaningful semantic
relationships.

1 See fastText website: https://fasttext.cc/docs/en/crawl-vectors.html.
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2.2 Semantic Evaluation of Embeddings

Before I examine word embeddings for origin bias, the first question is whether they fulfill their
original purpose of representing language at all. Finding a metric to evaluate this will later also
be necessary for assessing whether the quality of the vectors decreased during the attempt of
reducing their bias content.

How best to determine an embedding’s quality remains an open research question. Embeddings
are supposed to capture lexical semantics, and there exist a variety of methods to test their
semantic properties, ranging from applying the embeddings in downstream tasks to cognitive science
experiments (Bakarov, 2018). Downstream tasks here mean practical natural language applications
in which embeddings are used, such as text classification.

As this thesis concentrates on bias analysis, I choose to focus on word pair similarity, which is a
simple, commonly-used tactic for semantic evaluation. With this metric, a data set of word pairs is
created and annotated for similarity by humans. The word embeddings which are to be evaluated
are used to also calculate similarities for each word pair. A correlation test then determines if the
model judges semantic similarity in the same way humans do.

The first human-annotated data set like this was created by Rubenstein and Goodenough (1965)
as a psychological test, but contains only 65 word pairs. Finkelstein et al. (2001) created a larger
set of 353 words by instructing annotators to rate each pair on a scale of one to ten. This data
set is known as WordSim-353 or WS353 and constitutes one of the most popular data sets for
semantic evaluation of English language embeddings. It is noteworthy that this data set contains
two perhaps unexpected items, the first being a duplicate entry of the word pair money-cash
with two different similarity scores, and the second being the word pair tiger-tiger with the
obvious maximum score of ten.

Agirre et al. (2009) state that “different [word embedding] techniques are more appropriate to
calculate either similarity or relatedness”, and consequently split the WS353 data set into two (not
mutually exclusive) subsets of 252 relatedness and 204 similarity word pairs. Furthermore, they
advocate for Spearman Rank Correlation (Spearman, 1904) to be used as the correlation test since
it is not dependent on the two data sets being linearly correlated.

Similar data sets for other languages are scarce but exist. Leviant and Reichart (2015) translated
WS353 into German, Italian and Russian. To ensure consistency in their annotation, they devised
new annotation guidelines and re-annotated the English as well as the new multilingual data
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sets. They kept the duplicate money-cash word pair, but assigned the same score to both.
However, they excluded three word pairs which they deemed untranslatable, resulting in a data
set size of 350 word pairs. Gurevych (2006) created another German data set independent from
WS353 using a corpus-based approach, in which the author extracted word pairs of varying parts
of speech from GermaNet. Unlike the other data sets mentioned, GUR350 therefore includes
more than just nouns. This data set contains 350 word pairs and is sometimes referred to as
GUR350.

2.3 Bias Measurement Approaches

After giving an outline of one possible method of semantic evaluation, I now present an overview of
recent work on bias evaluation, which is one of the core parts of my thesis.

Bolukbasi et al. (2016)

The groundwork for bias assessment and mitigation was laid in a seminal work by Bolukbasi et al.
(2016). They uncovered the fact that English word embeddings contain gender bias by critically
examining word analogies and the relation of Word2Vec and GloVe embeddings to gendered
terms.

Their methodology is based on the hypothesis that the concept of gender is linearly separable
in the embedding space. This means that they assume there is a specific, removable, linear
component in word vectors which makes, for instance,

−−→
king different from −−−→queen.2 Bolukbasi

et al. (2016) refrain from explicitly testing this hypothesis, but it has since been mathematically
proven by Vargas and Cotterell (2020).

To go into more detail, Bolukbasi et al. (2016) collected definitional pairs of words such as <he,
she> or <man, woman> and then used those pairs to define a gender-direction in the embedding
space. They did so by performing a principal component analysis of the pairs’ aggregated difference
vectors and then taking the first principal component, which they argue contains most gender
information. This component, which is a vector of the same dimensionality as the model’s
embeddings, is the gender direction. Calculating the bias-direction is an important concept,

2 Throughout this thesis, a word’s vector will be distinguished from the word itself by arrow notation.
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both in their work and as an assumption in subsequent research. It can be viewed as a vector
that captures the concept of gender in the embedding space. Bolukbasi et al. (2016) used it to
define the bias of words by calculating a given word vector’s projection onto the gender-direction.
Assuming all vectors are normalised, they interpreted a higher absolute resulting value as higher
bias. In other words, if a word vector is similar to the gender-direction, it is likely related to the
concept of gender.

Apart from these calculations, the authors also carried out a word analogy test in which they let their
model predict answers to tasks such as she:he::nurse:x3, to which the model’s most likely esti-
mates were gender-stereotypical answers like, in this example, surgeon.

Critique of Bolukbasi et al. (2016) metrics

The bias evaluation step is often effectively equated with defining bias, meaning that in many
works, the bias metric determines what is understood to be “bias”. This is due to the fact that
researchers will restrict their analysis of bias to only their, perhaps singular, quantifiable measure
they employ and neglect to consider the broader implications of bias. This practice limits the
extent to which bias can be understood because authors extrapolate general statements about
bias from narrow bias definitions. However, it is questionable whether any single metric is able to
cover all aspects of bias in word embeddings.

Gonen and Goldberg (2019) addressed this issue in their “Lipstick on a Pig” paper and went so far
as to label the metrics presented in Bolukbasi et al. (2016) and later works (Zhao et al., 2018a)
as important, but ultimately being “party tricks”. In their words, “gender-direction is a great
indicator of bias, [but] it is only an indicator and not the complete manifestation of this bias”. The
authors assessed that restriction to this bias definition has led Bolukbasi et al. (2016) and other
researchers to report great success in their debiasing methods since they were able to calculate
high bias values before debiasing and low values afterwards, but that the “debiased” embeddings
may still contain bias in other, previously undetected ways.

In particular, they explored what Bolukbasi et al. (2016) call “indirect bias” in more depth. Indirect
bias essentially describes the bias measured in word embeddings with second order similarities
instead of first order similarities. Instead of measuring how related a word vector is to a certain
bias attribute, Gonen and Goldberg (2019) analysed how associated the neighbours of two words

3 Read: “She is to he as nurse is to what?”
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are to each other. For example, it might be the case that −−−→nurse is not be directly associated with
−→
she or

−→
he, but is associated with −−−−−−−−→

receptionist and
−−−−−−−−→
housekeeper. This could indicate that −−−→nurse

is biased, if the association between these three professions can only be explained by the fact that
they are all stereotypically female occupations.

Gonen and Goldberg (2019) carried out various experiments relating to these indirectly biased
associations. They concluded that they are pervasive in word embeddings, explainable solely
through undesired gender stereotypes, and not captured by other bias metrics. Consequently,
Gonen and Goldberg (2019) proposed a new bias metric in which they calculate how many of an
embedding’s k nearest neighbours are “socially biased”, i.e. have a strong stereotypical association
with the bias attribute.

Some subsequent works (e.g. An et al., 2022; Manzini et al., 2019; Aekula et al., 2021) have
implemented this new metric in the form of a clustering task. In this implementation, the most
biased words are determined before debiasing according to gender-direction bias and after debiasing,
a clustering algorithm is tasked with clustering these previously highly biased embeddings into two
clusters. Then, the accuracy of the clustering algorithm is measured in regard to whether the two
clusters correspond to the two bias characteristics, e.g. male and female. If the accuracy is high, this
indicates that the embeddings still contain information that allows them to easily be separated by
gender. This metric is sometimes called the neighbourhood metric.

Further criticism of Bolukbasi et al.’s bias evaluation relates to their use of word analogies. Nissim
et al. (2020) agree with Gonen and Goldberg (2019) on calling word analogy metrics “party
tricks” and warn against using this method. They point out that in many word analogy tasks,
the analogy equation is formulated in such a way that it is impossible for the word embedding
model to return one of the analogy input words. What this means is that for a query such
as “X is to woman as doctor is to man” the answer is — per definition — not allowed to
be doctor, since doctor is also an input term. Nissim et al. (2020) demonstrated that many
famous word analogies which seemingly prove the existence of bias are rendered spurious by taking
constraints such as this into consideration. Furthermore, the authors criticised the subjectivity
which is introduced into bias measurement by contriving the queries used in word pair analogy
tasks.
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Caliskan et al. (2017)

Aside from calculating direct bias with projections onto the bias-direction as described above, by far
the most common bias evaluation metric for static embeddings is the Word Embedding Association
Test (WEAT) introduced by Caliskan et al. (2017). It measures the strength of association between
word embeddings of different predefined categories.

The WEAT is based on the Implicit Association Test (IAT), which is a psychological study by
Greenwald et al. (1998) designed to assess implicit social biases. Participants were asked to
sort words into different categories and their reaction time for this task was measured. For
example, in one experiment participants were given African American names and pleasant words
like joy, love, or peace. In the next step, those African American names were substituted
with European American names. The participants’ reaction times for assigning pleasant terms to
African American names were slower than when presented with European American names, which
indicates a subconscious racial bias.

Caliskan et al. (2017) adapted this test for the use case of embeddings evaluation by substituting
reaction time with cosine similarity as the measure of association. The WEAT quantifies bias by
testing whether words belonging to one attribute group, e.g. “Black words”, are associated with
words belonging to two target groups, e.g. “pleasant words” and “unpleasant words”, differently
than words belonging to another attribute group, e.g. “White words”. It does so with a statistical
test which systematically compares the different groups. The procedure is more fully explained
in §3.2.2. The original IAT was carried out for a variety of different attributes. Caliskan et al.
(2017) adapt all original IAT experiments and thereby provide a metric and reference values for
gender and race bias.

Modifications of Caliskan et al. (2017)

The WEAT has been translated to other languages before. Most pertinent to my research questions
are Kurpicz-Briki’s translated WEAT seed words for four of the original WEAT experiments. The
author published translations to German, specifically Swiss German, and French. Using these
translated seed sets, she carried out experiments measuring gender and origin bias in German
fastText embeddings and was able to reproduce prior bias discoveries for this setting. In terms of
translation methodology, the author kept relatively close to the original seeds, translating terms
directly wherever possible. For the attribute sets consisting of names, Kurpicz-Briki (2020) used
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official federal lists of the most common names in Switzerland and manually selected names of
“originally Swiss origin” versus “of different origin”.

There exist a host of other WEAT translations such as Lauscher et al. (2020) for Arabic
(“AraWEAT”), Biasion et al. (2020) for Italian, and Qin et al. (2023) or Jiao (2021) for
Chinese. I will not discuss them in more detail in this thesis, since my focus is on German
embeddings.

Manzini et al. (2019) studied multi-class bias, i.e. bias attributes where there are more than two
manifestations like religion or race.4 To this end, they proposed a variation to the WEAT which
they named Mean Average Cosine Similarity (MAC). Ultimately, this metric simply performs the
WEAT for all attribute sets (e.g. Islam, Judaism, Christianity), then normalises and averages the
resulting scores.

Critique of Caliskan et al. (2017)

While the WEAT is a widely used metric and generally agreed upon to be a methodologically
well-executed work, researchers have also found faults with it.

Van Loon et al. (2022) found that for WEAT experiments which use names as attributes, results
are highly dependent on the relative frequency of the names in the embedding training corpus.
The researchers used geo-tagged data from X (formerly Twitter) to train word embeddings for
different geographical areas. For each area, they then measured the correlation between WEAT
results and a collection of sociological metrics for “anti-Black sentiment” in that area, controlling
for various factors. The study revealed a strong and significant correlation between the WEAT
and “anti-Black sentiment” metrics without control variables or with standard controls, but this
correlation became weak and non-significant when controlling for relative Black name frequency.
This suggests that the ability of the WEAT to predict anti-Black bias depends on access to name
frequency information.

The authors hypothesise that this is likely due to most word embedding models clustering tokens
together in the vector space not just based on semantic information, but also based on factors
like frequency (Mu et al. (2017), Gong et al. (2018)). Since humans use positive words more

4 Again, let it be noted that gender, too, exists outside a binary spectrum. However, to the best of my knowledge,
no work exists in which gender bias is not simplified to be a two-dimensional problem. Similarly, race is also
often treated as a black/white dichotomy.
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frequently than negative words (van Loon et al., 2022), this may lead to positive and frequent
words, and negative and infrequent words respectively, to be grouped together in the embedding
space. For example, if a Black name is rare in the data, the embedding model might estimate its
vector to be closer to negative than positive words partly because negative words are also more
rarely used in the corpus. That Black names are indeed more rare in corpora has been examined in
numerous works such as Wagner et al. (2015) who showed that Wikipedia is biased. To address
such frequency issues, the authors recommend measuring and controlling for relative seed word
frequency when using the WEAT.

Ethayarajh et al. (2019) also challenged the effectiveness of the WEAT, pointing out theoretical
flaws leading to a systematic overestimation of bias. They, too, criticised its dependency on
frequency in terms of skewed results when attribute words in the two sets have unequal frequencies.
Additionally, they remark that results can easily be manipulated by contriving the seed words
used.

The authors introduced a new metric called RIPA (Relational Inner Product Association) which is
very similar to the gender-direction method used by Bolukbasi et al. (2016), except that Ethayarajh
et al. (2019) introduced it more formally and explored the mathematical background of this metric
more closely. It is perhaps surprising that despite Bolukbasi et al. (2016) themselves stating that
their bias definition could theoretically be extended to account for weighted frequency, Ethayarajh
et al. (2019) did not introduce such frequency weights despite noting the issues that arise from
frequency.

Interestingly, the authors furthermore compared the bias measured with RIPA on Word2Vec
embeddings to what the bias would be “under perfect reconstruction”, i.e. using the actual
word distributions seen in the training corpus.5 Their empirical testing revealed that words
which are gender-neutral in the corpus (such as “potato”) remain un-gendered in the trained
embeddings, whereas for gendered words the model tends to amplify their genderedness. They
attribute this amplification to the model’s definitional ability of grouping words in similar con-
texts together. This observation points to a potential trade-off between emphasizing semantic
associations, which is usually desired for language models, and inadvertently reinforcing harmful
associations.

5 See Ethayarajh et al. (2019) for the mathematical background of this, as a workup would extend beyond the
constraints of this thesis.
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Antoniak and Mimno (2021)

Finally, I want to direct attention to the issue of “bad seeds” studied by Antoniak and Mimno
(2021). All existing bias metrics rely on lists of seed words, usually to define bias lexically.
However, as Antoniak and Mimno (2021) pointed out, these lists are problematic: “The rationale
for choosing specific seeds is often unclear, [...] the impact of the seeds is not well-understood,
and many previous seed sets have serious limitations”.

The authors criticised multiple points: First, the seeds themselves can inadvertently contain
biases if, for example, ugliness is defined with terms such as fat, chubby, disfigured and wrinkled.
Second, seed sets are often created for a specific purpose and then unthinkingly reused for different
domains, different embeddings or different bias definitions. Third, researchers usually use just one
set of seed words without testing its stability by comparing the results to different possible seed
sets.

In their experiments, Antoniak and Mimno (2021) showed that for the same embeddings and
measurement method, different seeds can lead to widely varying results. As a method of
determining the coherence of a seed set, they measured how far apart the two groups of seeds
belonging to a set (e.g. female vs. male words) were in the embedding space. They found that
coherence varies greatly.

The authors identified different factors which can lead to seed instability. Among these factors
are reductive bias definitions, the frequency and part-of-speech category of individual seed
words, the size of seed sets, and similarity of seed groups to each other. They recommended
future researchers to trace the origins of seed sets, examine seed features, document all seeds
publicly, and generally warned of the dangers of following research precedents without critical
examination.

Further Literature More approaches to bias measurement exist. For example, Caliskan
et al. (2022) looked beyond the WEAT method and provide an in-depth bias analysis with
heuristics like frequency and POS tags. Readers interested in a holistic overview may refer
to literature reviews by Sun et al. (2019), Blodgett et al. (2020) or Papakyriakopoulos et al.
(2020). Furthermore, Jin et al. (2021) provided a broad analysis of the social impact of NLP
research.
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2.4 Debiasing Methods

Upon the discovery of bias in word embeddings, much research on mitigating this bias has
sprung forth. I will here focus on categorising approaches and presenting examples of each
category, especially in so far as they are seminal works or fundamental to my own debiasing
experiments.

Debiasing with Post-Processing

Some of the first researchers to address the issue of “debiasing” embeddings were Bolukbasi et al.
(2016) in the same paper as introduced above. Building upon their hypothesis that gender is a
linearly separable subspace of static embeddings, they proposed to simply remove this subspace
from the trained embeddings.

Bias Subspace Removal The authors presented two slightly different debiasing algorithms.
“Neutralize and Equalize” aligns all gender-neutral words, which is the vast majority of the
vocabulary, to be orthogonal to the gender subspace (“Neutralize”) and also to be equidistant to
the two words of a word pair in a predefined list of word pairs (“Equalize”). For example, potato

should have zero association with the she − he direction, and also be equidistant from king and
queen. This algorithm is referred to under different names, but usually called Hard Debiasing
(Gonen and Goldberg (2019), Wang et al. (2020)). The second algorithm proposed, “Soften”
contains a parameter which regulates the degree of equalisation, so that the embeddings do not
need to be perfectly equidistant in the “Equalize” step.

Bolukbasi et al.’s method is an example of a post-processing approach to debiasing — they
manipulated embeddings after they were already trained. Interestingly, Ethayarajh et al. (2019)
argued that for embeddings which are constructed directly or indirectly using matrix factorisation of
a co-occurrence matrix, removing a linear component from the finished embeddings can be equiv-
alent to manipulating the training data before training, since the bias subspace could theoretically
also be factored out from the original co-occurrence matrix.

Wang et al. (2020) put forward an advancement of the Hard Debiasing algorithm which takes
into consideration the issue of word frequency discussed in §2.3. The authors argued that word
frequency can distort the gender-direction and therefore first performed a step in which they
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remove frequency information from embeddings before performing Hard Debiasing. They showed
that their debiasing also performed well according to the neighbourhood metric (Gonen and
Goldberg, 2019), indicating that their so-called Double-Hard Debiasing algorithm outperforms
other post-hoc methods.

Manzini et al. (2019) not only measured multi-class bias, but also adapted Hard Debiasing for multi-
class scenarios such as race. They did this by calculating the bias subspace that Hard Debiasing
uses with additional seed words for each additional attribute category. For example, instead of
defining the bias subspace with word pairs such as <woman, man>, they defined it with word
sets such as <church, mosque, synagogue>. The additional terms were simply concatenated
in the bias calculations. For instance, instead of forming a 300 × 2 matrix for 300-dimensional
embeddings and two bias characteristics, a 300 × 3 matrix was formed to accommodate three
bias characteristics.

Post-hoc Dictionary Debiasing Kaneko and Bollegala (2021) suggested another post-processing
method and introduced a new concept to debiasing research, leveraging dictionary definitions as
external unbiased resources. Their approach is based on the hypothesis that dictionary definitions
contain relatively neutral information about words. They trained an encoder-decoder model
with the purpose of altering input word embeddings in three ways. First, the embeddings were
encouraged to be orthogonal to a bias space (inspired by Bolukbasi et al. (2016)), second, the
embeddings should become similar to an embedding which represents that word’s dictionary defini-
tion, and third, all other information in the embeddings should be preserved. This way, the authors
attempted to enrich prior methods with additional external information. However, An et al. (2022)
judged that Kaneko and Bollegala (2021) did not achieve convincing results. This is characterised
by many of their reported improvements being either marginal or not statistically significant, and
their paper containing multiple unclear or contradictory results.

Debiasing with Adjusted Training Objectives

A different debiasing strategy is adjusting the training objective of an embedding model at train
time. A pioneering example of this type of debiasing is the work by Zhao et al. (2018a), who
introduce their algorithm GN-GloVe (gender-neutral GloVe).
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GN-GloVe Zhao et al. (2018a) criticised the debiasing method of Bolukbasi et al. (2016). They
stated that “[f]irst, [Bolukbasi et al.’s] method is essentially a pipeline approach and requires
the gender-neutral words to be identified by a classifier before employing the projection. If the
classifier makes a mistake, the error will be propagated and affect the performance of the model.
Second, their method completely removes gender information from those words which are essential
in some domains such as medicine and social science”. Zhao et al.’s method intends to alleviate
these issues in a number of ways.

First, instead of manipulating the embeddings in a multi-step post-processing pipeline, they
executed debiasing during one cohesive step while the embeddings are being trained. Second, they
did not completely remove gendered information from certain words as Bolukbasi et al. (2016)
do, but instead made alterations to GloVe’s training objectives so that gender information is
contained to a limited number of embedding features and the remaining vector dimensions can be
neutralised. One can then later exclude the gender features if one wishes to do so. The authors
achieved this by defining female and male seed words and encouraging the model to differ in the
“gender coordinates” (Gonen and Goldberg, 2019) for words of the female versus male set. The
remainder of the features was encouraged to be orthogonal to the gender-direction, similar to
Bolukbasi et al. (2016).

Dictionary Debiasing at Train Time DD-GloVe (Dictionary-Debiasing GloVe) by An et al.
(2022) constitutes another method for leveraging dictionary definitions for debiasing, comparable
to Kaneko and Bollegala (2021), except that DD-GloVe adjusts embeddings at train time. The
authors directly adapted the training objectives of the GloVe model with the goal of reducing
gender and racial bias. They proposed four new loss functions, which together serve to remove
gendered or racial information that is not present in dictionary definitions from the embeddings,
and generally bring a word’s embedding closer to its dictionary definition. The precise loss functions
are explained in §3.3.2.

An et al. (2022) criticised the approach of Kaneko and Bollegala (2021), stating that the assumption
of definition embeddings, i.e., embeddings that capture definition texts, as neutral reference points
“is a major flawed assumption in post-processing debiasing. Due to the biases in pretrained word
vectors, the definition embeddings also contain biases”.

An et al.’s own method addresses this issue by training the definition embeddings at the same time
as all other embeddings. In their model, definition embeddings are simply an average of the word
vectors contained in a definition. As the word vectors begin to gain semantic meaning, so do the
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definition embeddings. An et al. (2022) claimed that in every training iteration, the embedding
definitions become more neutral because their building blocks — the word embeddings — get
increasingly debiased in each iteration, and in return the definition embeddings again influence
the word embeddings to become more similar to their definition.

This approach is reported by the authors to have promising results. DD-GloVe is claimed to
perform on par or better than multiple other debiasing methods on metrics such as the WEAT or
the neighbourhood metric.

Debiasing with Data Substitution

Apart from adjusting the embedding creation process after or during training, there also exist debias-
ing methods which alter the training data used to create embeddings.

Lu et al. (2020) were among the first to propose such a solution. They performed Counterfactual
Data Augmentation (CDA) wherein they duplicated a training corpus and then substituted gendered
words with their opposites in the duplicate corpus. For example, they substituted “king” with
“queen” in the duplicate corpus. While doing so, they followed some additional substitution rules
which prevent the creation of semantically incoherent or grammatically incorrect sentences. Using
this method, they aimed to create a gender-balanced training corpus, which they argue would
lead to unbiased embeddings. The authors measured bias with a coreference resolution task in
which the model had to match occupations to genders. Using this metric, they reported success
of their debiasing method. However, they did not report more widely used metrics such as the
WEAT.

An advancement of CDA was put forward by Maudslay et al. (2019), who introduced a method they
call Counterfactual Data Substitution (CDS). CDS improves upon CDA by employing a “Names
Intervention”, which is a name-pairing technique with which first names are no longer ignored in the
substitution process. Additionally, instead of duplicating the corpus and substituting every gendered
term, Maudslay et al. (2019) substituted potentially biased text within the same original corpus,
but only with a 50 % likelihood. According to the authors, this prevents the creation of unnatural
duplicate text. Furthermore, substitutions were performed at a document level instead of sentence
level to improve coherence. The authors reported debiasing success measured on the WEAT, but
also in terms of indirect bias measured by a clustering task.
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One drawback of training data substitution methods is that they are time-consuming because
they require the user to define substitution word pairs, execute the substitution over an entire
training corpus, and then also re-train the embeddings.

I have presented an overview of pertinent debiasing methods and strengths and weaknesses of
those methods. For a more complete survey of existing methods, interested readers may again
refer to literature reviews by Papakyriakopoulos et al. (2020) and Sun et al. (2019). Comparisons
between the performance of different methods can furthermore also be found in the results
sections of some of the papers mentioned in this chapter, e.g. in An et al. (2022) or Wang et al.
(2020).
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3 Methods

The methodology in this study consists of experiments carried out with the goal of quantitatively
answering my three leading research questions (see chapter 1). In this chapter, I will expand upon
the metrics and models used in my research. This includes presenting the materials such as text
corpora or other data sources used by these methods.

3.1 Choice of Embeddings

The bias present in word embeddings differs between different types of embeddings and the way in
which bias can be analysed and mitigated also depends on the embedding model used. Therefore
I first present the embeddings I selected for my experiments.

Selecting Pre-Trained Embeddings

In §2.1, I present works supporting the relevance of static embeddings. For multiple reasons, this
thesis only examines static embeddings. There is more sophisticated prior bias research available
for these embeddings than for contextualised embeddings, they are more explainable, easier to
use and faster to train, which enabled me to focus on a thorough analysis instead of the training
process.

The primary embeddings used in this study were fastText (Bojanowski et al., 2017) and GloVe
Pennington et al. (2014) embeddings.

One of the reasons for selecting fastText were that reference values for the WEAT and for word
similarity tasks are available in literature for English and German embeddings. Furthermore,
fastText handles out-of-vocabulary words better than W2V (see explanation in §2.1), which is
especially relevant because the evaluation data I used contains some rare words like foreign first
names.

Last but not least, pre-trained German fastText embeddings are readily available for download on
the official fastText website1. The more commonly used version of these embeddings is trained on
1 https://fasttext.cc/docs/en/pretrained-vectors.html
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Common Crawl, but in this thesis I examine fastText embeddings trained on Wikipedia since they
are more directly comparable to the GloVe embeddings I used. These fastText embeddings are 300-
dimensional, their vocabulary size is 2,275,233 and they were trained using the skip-gram method
with default parameters as specified in Bojanowski et al. (2017).

GloVe, on the other hand, I selected primarily because it is the only embedding model for which
DD-GloVe (An et al., 2022), one of the debiasing methods I implemented (see §3.3.2), is available.
Additionally, GloVe is an embedding model which generally performs well on standard benchmarks
and is therefore widely used (see §2.1).

I obtained pre-trained German GloVe embeddings from Deepset2, a private Berlin-based NLP
solutions company who publish part of their products open-source. The embeddings were trained
on a German Wikipedia dump of unspecified date. Based on Deepset’s GitLab repository3,
the Wikipedia dump is likely to originate from 2018. The embeddings have 300 features and
the vocabulary is 1,309,280 tokens large. Deepset do not explicitly specify further training
details, but based on their model code appear to have trained their GloVe embeddings using a
minimum vocabulary count of 20, no maximum vocabulary size, 30 iterations, and a symmetrical
context window size of 15. Other parameters seem to be unchanged from Pennington et al.
(2014).

In my experiments, I used these pre-trained GloVe embeddings only for validation purposes since I
also trained GloVe embeddings from scratch, as described in the next subsection. Those are the
main GloVe embeddings I analyse. I only report results for the pre-trained GloVe embeddings for
experiments where it was necessary to validate my GloVe training.

Training GloVe Embeddings

For the DD-GloVe debiasing method introduced later (§3.3.2), it is necessary to train GloVe
embeddings from scratch. To be able to accurately compare embeddings before and after
debiasing, I also trained GloVe embeddings normally, i.e. without debiasing. For this purpose, I
used the same training code and data as for DD-GloVe, only without the additional debiasing loss
functions.

2 https://www.deepset.ai/german-word-embeddings
3 https://gitlab.com/deepset-ai/open-source/glove-embeddings-de
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The code implementation of GloVe I utilised is that by An et al. (2022), available on GitHub4. It
is largely based on the original GloVe code by Pennington et al. (2014), also published on GitHub
5. An et al. provide an option to run their training code without debiasing, i.e. with original
GloVe loss functions. In theory, this is equivalent to running Pennington et al.’s code since it
excludes all modified objective functions.6

I ran GloVe training using a maximum vocabulary size of 400,000, minimum word count of 5,
vector size of 300, symmetrical window size of 10, 40 iterations, α = 0.75, and optimisation with
AdaGrad (Duchi et al., 2011), with an initial learning rate of 0.05. These parameters are largely
identical to those specified in Pennington et al. (2014) except for the smaller number of training
iterations, which is based on 0raining specifications by An et al. (2022). Moreover, vector values
are clipped to be in the range of [−1, 1] as implemented by An et al. (2022) “to avoid numerical
difficulties”.

The training data for my German GloVe embeddings is a Wikipedia dump made available by
HuggingFace7 and dated 2022-03-01. It is comprised of 2,665,357 articles containing 1,147,061,829
words and 15,572,403 unique tokens. I selected a Wikipedia corpus due to its availability,
manageable size compared to corpora such as CommonCrawl, and common usage as embedding
training data and therefore comparability. As pre-processing steps, I lowercased the corpus and
tokenised it using NLTK’s word_tokenize8, thereby also removing punctuation. This is based
on pre-processing steps performed by Pennington et al. (2014) and An et al. (2022), except those
works tokenised with the Stanford tokeniser9.

To validate my self-trained embeddings, I performed a semantic evaluation task, which I will
explain further in the next section, and compared their performance to values found in litera-
ture.

4 https://github.com/haozhe-an/DD-GloVe
5 https://github.com/stanfordnlp/GloVe
6 I also briefly confirmed this empirically by calculating similarity scores for the WordSim-353 data set (see

§2.2) for two sets of embeddings, one obtained from the Stanford NLP website (https://nlp.stanford.
edu/projects/glove/) and one trained using An et al.’s code. I then compared the resulting similarity
scores using Spearman’s rank correlation coefficient. The correlation was very high with a coefficient ρ of
approximately 0.8991 and an associated p-value of approximately 0, indicating that the two training methods
result in similar embeddings. The difference can be explained by different training data used, since Pennington
et al. (2014) use an older Wikipedia dump and slightly different training parameters such as a higher number
of iterations than An et al. (2022) use.

7 https://huggingface.co/datasets/wikipedia
8 https://www.nltk.org/api/nltk.tokenize.word_tokenize.html
9 https://stanfordnlp.github.io/CoreNLP/tokenize.html
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3.2 Evaluation Metrics

In this section, I present the metrics with which I evaluated the embeddings introduced above.
First, I briefly explain the word similarity task I used for semantic evaluation, and then I focus
on my methods for bias evaluation. I expand on the theoretical background of the evaluation
methods, the rationale for selecting them, and the changes I make to adapt them for German
origin bias.

The selected metrics were applied to each set of embeddings before and after debiasing in order
to answer the research questions of whether German embeddings contain origin bias and if the
tested methods are effective in mitigating such bias.

3.2.1 Semantic Evaluation Metric

The purpose of including a semantic evaluation metric is to ensure that the embeddings I
used are consistent with those used in other literature and that any debiasing algorithms ap-
plied to them affect only the bias components and not the general performance of the embed-
dings.

How best to measure the quality of embeddings is an open research question. As described in
§2.2, a common test is word pair similarity, particularly using the WS353 data set (Finkelstein
et al., 2001). Word pair similarity is a relevant metric in the context of debiasing because
it focuses on the semantic relationships between word vectors. Debiasing methods often also
utilise the semantic relationship between word pairs as a basis for debiasing (e.g. by defining a
bias-direction) and could therefore potentially unintentionally impact these semantic properties in
word embeddings in adverse ways. A decrease in performance after debiasing would indicate that
this is the case.

Since I examine German embeddings, I used a German word similarity data set instead of WS353,
namely the GUR350 data set10 (Gurevych, 2006). Out of all available German data sets for word
pair similarity, none are dominant over the others in terms of their use in relevant literature. An
advantage of GUR350 is that the author provided reference test scores for embeddings that are
comparable to the embeddings I used. Furthermore, with a size of 350 word pairs, it is one of the

10 It can be found in full at https://github.com/dkpro/dkpro-similarity/blob/master/
dkpro-similarity-experiments-wordpairs-asl/src/main/resources/datasets/wordpairs/
de/wortpaare350.gold.pos.txt

26

https://github.com/dkpro/dkpro-similarity/blob/master/dkpro-similarity-experiments-wordpairs-asl/src/main/resources/datasets/wordpairs/de/wortpaare350.gold.pos.txt
https://github.com/dkpro/dkpro-similarity/blob/master/dkpro-similarity-experiments-wordpairs-asl/src/main/resources/datasets/wordpairs/de/wortpaare350.gold.pos.txt
https://github.com/dkpro/dkpro-similarity/blob/master/dkpro-similarity-experiments-wordpairs-asl/src/main/resources/datasets/wordpairs/de/wortpaare350.gold.pos.txt


two biggest German word pair similarity data sets. The other of those test sets is that created
by Leviant and Reichart (2015)11. However, Leviant and Reichart (2015) take their word pairs
directly from WS353 without reviewing whether they are suitable for embeddings trained on other
languages. In comparison, the GUR350 data is derived with a corpus-based system using German
language data and is therefore inherently based on the properties of German language. Besides,
the multilingual WS353 translation by Leviant and Reichart (2015) contains some unaddressed
spelling errors in its German variant (“Präzendensfall” instead of Präzendenzfall and “Palestinenser”
instead of Palästinenser) which cast doubts upon its reliability.

To calculate an embedding’s similarity score for a given word pair, I used cosine distance as
implemented by the python library SciPy (Virtanen et al., 2020), which for two vectors u⃗ and v⃗ is
defined as

d = 1 − u · v

||u||2||v||2

For easier comparison to other works which measure similarity and not distance, I took the
complement of d. I measured the correlation of the similarity calculated by the model with
the judgement of humans using Spearman’s rank correlation coefficient (Spearman, 1904), also
implemented with SciPy12.

For my experiments on GloVe embeddings, some words in GUR350 are out of vocabulary. In those
cases, some existing works (Bojanowski et al., 2017) assign a similarity of zero to that word pair.
This makes sense since usually word pair similarity tasks are used to measure an embedding’s
performance and the model should therefore be “punished” for words it does not know with the
likely incorrect similarity score of zero. In this thesis, however, I primarily aim to measure the
difference in performance before versus after debiasing. Out-of-vocabulary tokens are not included
in the debiasing process since they are not part of the model. Because of this, the difference
in performance can best measured by eliminating out-of-vocabulary words from the test. This
puts a greater focus on the semantic performance for words which were affected by the debiasing
algorithm.

I carried out three experiments: One validating my embeddings by comparing my embeddings’
performance on the full GUR350 data set to values found in literature, one analysing the effects
of reducing the GUR350 data set to exclude out-of-vocabulary tokens, and finally one with

11 Data set available at https://leviants.com/multilingual-simlex999-and-wordsim353/.
12 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
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the reduced version of GUR350 comparing the embeddings’ performance before versus after
debiasing.

3.2.2 The WEAT Method

The metric I employed for bias measurement is the Word Embedding Association Test (Caliskan
et al., 2017). The WEAT is a versatile metric which can be adapted for different languages and
biases by exchanging the used seed lists.

Caliskan et al. (2017) compared WEAT values to the results of the original psychological IAT
experiment and thereby backed the validity and expressiveness of the WEAT with a comparison
to human biases. This gives the WEAT an advantage over other bias metrics which do not
have a frame or reference for determining how well they are able to capture bias. Furthermore,
the WEAT is easily interpretable because it is a statistical permutation test which has clear
definitions for the significance of its results. Additionally, many reference values for WEAT
experiments are available in peer-reviewed literature since it is the most common evaluation
technique.

Flaws of the WEAT like seed instability are addressed in the next subsection, in which I explain
the adjustments I make to the WEAT. First, however, I explain the methodology of the WEAT
in more detail since this method holds great significance to my thesis and understanding it is
necessary in order to understand the results of my experiments.

Each WEAT experiment always requires four seed lists, two attribute and two target lists. The
association between these sets of words is measured using cosine similarity and a statistical
permutation test. Note the terminology of target words versus attribute words, which are
sometimes confused or swapped in literature. In my thesis, I will abide by the original terminology
of Caliskan et al. (2017), in which attribute words are those pertaining to a certain human
attribute for which the bias is to be tested, e.g. gender or race, and target words are those to
which the attribute words are compared, e.g. professions or sentiments. While target and attribute
words are mathematically indistinguishable and fully commutative (Maudslay et al., 2019), a clear
terminology is still helpful for communication.

In her German WEAT translation, Kurpicz-Briki (2020) translated target and attribute words
for WEAT 5, which is the WEAT experiment pertaining to race as per the original number-
ing in Caliskan et al. (2022). I list them in Table 1 for convenience. Kurpicz-Briki (2020)
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Seed Type Label Terms
Attribute Group 1 (“originally Swiss”) Peter, Daniel, Hans, Thomas, Andreas, Martin,

Markus, Michael, Maria, Anna, Ursula, Ruth,
Monika, Elisabeth, Verena, Sandra

Attribute Group 2 (“different origin”) Ladina, Fatima, Fatma, Alma, Soraya, Svetlana,
Elif, Vesna, Mehmet, Mustafa, Aleksandar, Mo-
hamed, Ibrahim, Dragan, Hasan, Mohammad

Target Pleasant Spass, Liebe, Frieden, wunderbar, Freund, Freude,
Lachen, glücklich

Target Unpleasant Qual, furchtbar, schrecklich, übel, böse, Krieg,
scheusslich, Versagen

Table 1: Seed words translated by Kurpicz-Briki (2020) for the original WEAT 5 experiment
(Caliskan et al., 2017). Associations are compared between the two different attribute
lists in relation to the target lists. Each attribute list contains 8 female and 8 male first
names, and the target lists 8 terms each.

reported results for fastText embeddings, which enables me to validate my WEAT implementation
by comparing my scores for fastText embeddings with the values published by Kurpicz-Briki
(2020).

The null hypothesis H0 of the WEAT is that “there is no difference between the two sets of target
words in terms of their relative similarity to the two sets of attribute words” (Caliskan et al., 2017).
This hypothesis is tested as follows.

First, a function is defined which for a given target word w (e.g. “Liebe”) measures whether
this word is, on average, more similar to the words in attribute set A (e.g. German names)
than the words in attribute set B (e.g. names of other origin). Caliskan et al. (2017) call
this function s(w, A, B), but since they overload s, I instead name it c for cosine and define it
as

c(w, A, B) = meana∈A cos(w⃗, a⃗) − meanb∈B cos(w⃗, b⃗)

For unbiased embeddings, c would return a value close to 0 since the the two means would be
approximately the same. A positive return would, in my example, mean a closer similarity of
“Liebe” to names of German origin than to names of other origin, and a negative return would
mean the opposite. By summing the returns of c over the entirety of a target set X, which
could, for example, be a collection of pleasant words, one can estimate a tendency of whether
one attribute group is more similar to pleasant words than the other group. The same can be
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repeated for the second target set Y (for example, the unpleasant words). This forms the test
statistic s, which can be expressed as

s(X, Y, A, B) =
∑
x∈X

c(x, A, B) −
∑
y∈Y

c(y, A, B)

For perfectly unbiased embeddings, both summands should be close to zero. If the embeddings
contained negative bias towards foreign names, the second sum would be positive and the first
negative, resulting in a negative value s.

Using these function, it can be tested whether the null hypothesis can be rejected with statistical
significance. To this end, a permutation test is performed in which all i possible equal-sized
partitions Ai and Bi of the attribute sets A and B are formed.13. For example, one such permu-
tation might be A42 = {Peter, Daniel, Hans, Thomas, Andreas, Martin, Markus, Michael, Maria,
Anna, Ursula, Ruth, Ibrahim, Dragan, Hasan, Mohammad}.14 For each of those permutations,
the test statistic s is calculated and compared to the test statistic which results when using the
original, i.e., non-permuted attribute sets. The percentage of permutations in which the measured
association is greater than the original association, i.e., the percentage for which there was larger
incidental bias measured than what the actual data shows, is the p-value of this test, formally
given as:

Pri[s(Xi, Yi, A, B) > s(X, Y, A, B)|H0]

I used the standard significance level α = 0.05, meaning that for p-values below 0.05, the
null hypothesis can be rejected. A p-value above 0.05 does not necessarily mean that the null
hypothesis is true, i.e., that the embeddings are bias-free. The WEAT can only measure presence,
not absence of bias.

In order to make the WEAT calculations computationally feasible, I followed Kurpicz-Briki
(2020) and Chaloner and Maldonado (2019) and computed only 100,000 randomly selected
permutations instead of all possible permutations. With

(
32
16

)
= 601, 080, 390 possible combinations

13 Caliskan et al. (2017) talk about permuting the attribute sets, which makes sense contextually and in terms of
the number of possible permutations, but then suddenly use Xi and Yi in their notation for the permutations.
This is likely an error, regrettably copied by subsequent publications, and meant to be Ai and Bi

14 The partitioning is done with no consideration for gender, but for a large enough number of permutations, the
law of large numbers suggests that on average, there will be an equal number of female and male names in Ai

and Bi.
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for an attribute set size of 16, it is highly improbable to encounter the same permutation
twice.

Additionally to the p-value, I also reported the effect size of the test with Cohen’s d (Cohen,
2013), defined as

meanx∈Xs(x, A, B) − meany∈Y s(y, A, B)
w∈X∪Y s(w,A,B)

It describes the difference between the average of two distributions — here, the difference between
the association of origin with pleasant terms versus the association of origin with unpleasant
terms. This distance is measured in standard deviation units. It can be interpreted as the strength
of the observed effect, i.e. how “strong” the embedding bias is. A magnitude of d < 0.5 is
commonly interpreted as a small effect, 0.5 ≤ d < 0.8 as a medium effect and values of d ≥ 0.8
as a large effect (Sawilowsky, 2009).

3.2.3 WEAT for German Origin Bias

The WEAT as proposed by Caliskan et al. (2017) is affected by various limitations which
I describe in §2.3. I want to ensure that it captures origin bias in German embeddings as
accurately as possible. For this purpose, I created new WEAT name lists that address two main
problems.

Addressed WEAT Problems First, the WEAT needs seeds that can concisely characterize the
relevant bias attribute, which in my case is origin. In prior work, fairly small target and attribute
lists have been used. Due to their size, they are more susceptible to distortion by infrequent or
ambiguous terms. In this thesis, I expanded the attribute lists according to rigorous criteria to
stabilise the WEAT measurements and make them more robust against artefacts in the data and
manipulation with non-semantic information such as frequency. To further combat frequency
issues (Ethayarajh et al. (2019), van Loon et al. (2022)), I made frequency in the training corpus
a selection criterion for the names I included in my attribute sets.

Second, what I intend to analyse is the notion of origin bias, which is a multidimensional
concept, i.e., there are more than just two manifestations of this attribute. One could define
two attribute sets German and Foreign, as Kurpicz-Briki (2020) essentially does. However,
this presents two issues. It frames Germans as having a special status and all other ethnic
groups as being interchangeable, which is ethically questionable. It also oversimplifies the
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problem at hand: Different groups of minorities are discriminated against differently, and it
is likely that word embeddings contain different biases for these groups of different national
origin. In my thesis I therefore created multiple attribute groups with names of different national
origin.

Name Selection Procedure To overcome these issues, I defined new attribute lists of first
names following the selection and filtering process described below.

As a first step, I decided on the nationalities for which I want to evaluate bias. It is important
for the debiasing and evaluation process that the selected names occur frequently enough in
the training corpus. I expected that there would be more data available for larger minorities of
the German population than for smaller minorities, so I considered the five biggest minorities
in Germany, which are people from Türkiye, Poland, Syria, Romania and Italy (Bundeszentrale
für politische Bildung, 2022). Out of those, I specifically focus on three in this thesis. To be
able to clearly assign measured biases to nationalities, the names used for evaluation should be
distinguishable between the different countries. Based on this, I selected Türkiye, Poland and Italy
as countries since their cultures and languages differ more between each other than is the case
for other combinations of the top nationalities. Additionally, these countries represent different
historical waves of immigration to Germany15, which might lead to different biases associated
with these groups.

Sources for the name data I used differ for each country. I extracted names from sources listing
the most common names in Germany, Türkiye, Poland and Italy respectively. Using most common
names (instead of, e.g., a random selection) has the advantages of the names being representative
for that country, the names having higher frequency in the training corpus, and simply the
fact that such data is available at all. Ideally, since the training data is in German, it would
be most appropriate to use the most common foreign names in Germany instead of in each
respective country, but such data is not officially available in Germany and manually selecting
foreign-sounding names would introduce subjective biases. For each country, I sourced an equal
amount of female and male names to avoid unintended gender bias, and, wherever possible,

15 See https://www.lpb-bw.de/anwerbeabkommen-tuerkei for Turkish immigration,
https://www.bpb.de/themen/deutsche-einheit/migrantische-perspektiven/325312/
migranten-aus-polen-im-wiedervereinigten-deutschland/ for Polish immigration and https://
www.bpb.de/themen/deutschlandarchiv/259001/italienische-zuwanderung-nach-deutschland/
for Italian immigration.
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used the most popular names across a wide time frame in order to prevent an age bias in the
names.

Table 2 shows the precise sources used for each country, as well as comments on that source. “Pop-
ular names” sites hosted by private individuals like beliebte-vornamen.de or behindthename.
com are useful resources because they aggregate data from various official sources like birth
registries.

On beliebte-vornamen.de, the author Knud Bielefeld aggregates name statistics from sources
such as registers of birth, newspapers, registers of university graduations, and more. It is the only
such source available for Germany (Frank, 2013).

Mike Campbell operates behindthename.com, a website similar to beliebte-vornamen.de but
including names from a variety of languages. The names are sourced from name dictionaries,
personal collections, and official registries, among others.

“Wikipedia-Personensuche”16 is a search engine for persons about whom an article exists in the
German Wikipedia. It provides the functionality to sort by most common first names of a certain
national origin, with an option to filter by gender. I used it on a supplementary basis to other
sources because using resources other than Wikipedia provides an additional external judgement of
the names’ popularity outside of the embeddings’ training corpus.

From these sources, I initially extracted the top 50 female and top 50 male names, as specified in
Table 2. These names I then subjected to a filtering process, for which I defined criteria the names
must meet. First, names should be unique to the country they are supposed to represent, especially
in comparison to Germany. For example, Anna is a common Polish name, but it is also a common
German name and thus should not be used. Second, the names should be frequent enough in
the training data to produce meaningful embeddings and not be “automatically” associated with
negative words (van Loon et al., 2022). Third, the names should be unambiguous with non-name
tokens. For instance, the common Turkish name “Can”, in a case-insensitive model, is ambiguous
with the English word “can”. Fourth, the names should be unambiguously assignable to one
gender, i.e., not be gender-neutral.

In more concrete terms, I applied the following five step filtering process to ascertain that these
criteria are met. The steps were applied consecutively, i.e., if a name was excluded after step one,
it was not considered for step two or later steps.

16 Person search: https://persondata.toolforge.org/index.php
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Country Sources Comments
German https://www.beliebte-vornamen.

de/49519-erwachsene.htm
Most popular names in Germany for peo-
ple born 1945-2000; only first names con-
sidered; phonetically identical names (e.g.
Matthias/Mattias) treated as being the
same; top 50 female and top 50 male
names used

Türkiye
https://www.behindthename.com/
top/extremes/turkey

Originally from official Turkish govern-
ment statistics; top Turkish names used
from 1980-2021; lists “most consistently
popular”, “top rises over two decades” and
“top falls over two decades” used for age
balance; 30 female/names in total

https://www.beliebte-vornamen.
de/1802-tuerkische.htm

Originally from Turkish government statis-
tics for children born in 2022; top 5 fe-
male/male names

https://persondata.toolforge.
org/vorname/top/TUR

Top 15 female/male names used

Poland https://www.behindthename.com/
top/extremes/poland

Same methodology as for Turkish names;
original name source not made entirely
transparent (website’s author thanks a site
visitor for his contribution)

https://persondata.toolforge.
org/vorname/top/POL

Same methodology as for Turkish people;
top 20 female/male names extracted

Italy
https://www.behindthename.com/
top/extremes/italy

Same methodology as for Turkish and Pol-
ish; original source not entirely transparent

https://www.beliebte-vornamen.
de/562-italienische.htm

Top 10 female/male most commonly used
names in Italy today; originally possibly
from private blog post

https://persondata.toolforge.
org/vorname/top/ITA

Same methodology as for Turkish and Pol-
ish; top 10 female/male names used

Table 2: Online sources for name data used in my WEAT experiments per nationality,
including commentary on the sources. behindthename.com and beliebtevornamen.de
are privately operated name collection websites aggregating name data from official and
unofficial sources alike. The Wikipedia person search is a search engine for German
Wikipedia allowing to sort by popular names.
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1. Relevancy: I checked whether a Wikipedia name article exists for the token in question. If
not, the name was excluded. Wikipedia articles for the token which are not name articles,
e.g., an article titled “Can” which describes beverage containers would, not fulfill this
criterion, whereas an article titled “Can (Turkish first name)” would.

2. Frequency: I counted whether there were less than ten occurrences of the token in the
Wikipedia corpus I use for training (see §3.1). If so, the name was excluded. This step is
distinct from the fist since some names appear in the corpus but do not have their own
Wikipedia article. The first step checks whether the term is relevant as a name whereas
this step checks whether a meaningful embedding can be learned for this term.

3. General ambiguity: Wikipedia defines a primary page for tokens for which there exist
multiple articles. For example, there is an article describing the first name “Alina”, but also
one for an opera, a film, an album and a ship all called “Alina”. The primary page is the
article which the user is directed to when searching for this token in the Wikipedia search
bar without any further specifications. For “Alina”, e.g., the primary page is the name page.
The primary page can either be a proper article or a disambiguation page where the different
possible articles are listed. Wikipedia editors determine a token’s primary page according
to various criteria such as article traffic statistics.17 I discarded any tokens for which the
primary page was an article other than the name page. In cases where the primary page was
a disambiguation page, I qualitatively assessed whether it is likely that many occurrences
of this token in the training corpus refer to a meaning other than the name. Often times,
for example, the alternative articles cover ships, lesser known artistic works, or a variety of
minor geographical objects, for which I deemed the ambiguity acceptable.

4. Gender ambiguity: I searched for the name in question using the Wikipedia persons search
(https://persondata.toolforge.org/) introduced above. The tool allows the user to
filter by gender. For each name, I retrieved the number of articles which treat a female
versus a male person. If less than 95% of the articles were about a person of the gender
which I intended to represent with the name in question, the name was excluded. For
example, since only 61.32% of “Andrea” articles are about a woman, I did not include the
name in the data set.

5. National ambiguity: Lastly, I again searched for the name in question using the Wikipedia
persons search, similarly to step four. This time, I crawled the nationality metadata of the

17 For more information on primary page criteria, see https://en.wikipedia.org/wiki/Wikipedia:
Disambiguation#Is_there_a_primary_topic?.
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resulting articles and counted the occurrences of each country for the name in question. If
any countries out of Turkish, Polish or Italian — except for the target country — were in
the top five nationalities, I removed the name.18 For example, for the name “Anna”, most
articles (35.53 % out of 3310) in the German Wikipedia were about a German Anna.19

However, the fourth most common occurrence (5.46 %) was as a Russian name. Therefore,
I excluded the name Anna from my experiments. I also removed names if under 50 % of
the articles about bearers of that name were about a person of the target nationality. If
that percentage was between 51 % and 75 %, I made my choice dependent on whether
behindthename.com listed the target nationality as the most common usage in terms of
nationality. If so, I kept the name, otherwise, I discarded it.

The experiments for which I used Wikipedia were conducted on the July 2023 version of Wikipedia.
Due to technical restrictions, I did not distinguish between first, last, and middle names in my
searches using the Wikipedia persons search. That tokens were lower-cased for all steps and
represented accurately in their encoding, meaning that, e.g., Maria and María were not treated as
the same name. The Wikipedia persons search also returns fictional characters, pen names and
the like. These results were not filtered out.

After applying all inclusion and exclusion criteria according to this filtering algorithm, the smallest
remaining name set were female Italian names with 14 remaining names. I found that this is due
to female names generally being rarer than male names, and Italian names being less unique to
Italy than German, Turkish or Polish names were to their countries. For better comparability,
I reduced all other name sets to the size of 14 names per gender as well, cutting off those
names with the lowest number of occurrences in the Wikipedia training corpus. This finally
resulted in four name sets with 28 names each. The full list of names can be found in Table
3.

18 If the target nationality of a name was one other than German and German was within the top five nationalities,
I did not immediately exclude the name. Since I analysed name occurrences in the German Wikipedia, there
were bound to be a certain number of German individuals for most names, especially since people might have
dual citizenship. For example, only four out of the 200 gathered Turkish names had zero occurrences as a
German name. I therefore only excluded names which had more bearers of German nationality than of the
target nationality.

19 An additional 7.51 % of articles were about Austrian Annas. I did not count Austrian or Swiss citizens as
belonging to the same category as German citizens. I made this choice because there might be differences in
the cultural perception of people from these three countries and combining them nationalities could therefore
potentially skew results.
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Nationality Names
German Katharina, Susanne, Karin, Ulrike, Renate, Birgit, Bettina, Jutta, Ute, Cornelia,

Katja, Heike, Stefanie, Kerstin, Tanja, Hans, Carl, Wolfgang, Andreas, Werner,
Christoph, Klaus, Philipp, Joachim, Jürgen, Dieter, Matthias, Manfred, Sebastian,
Rainer

Turkish Esra, Merve, Fatma, Sibel, Elif, Ayşe, Emine, Özlem, Zeynep, Hatice, Dilek,
Ebru, Pınar, Hülya, Derya, Mustafa, Murat, Ahmet, Kemal, Orhan, Hüseyin,
Bülent, Metin, Ömer, Emre, Halil, Erkan, Uğur, Burak, Volkan

Polish Magdalena, Ewa, Zofia, Beata, Katarzyna, Krystyna, Małgorzata, Jadwiga,
Danuta, Elżbieta, Urszula, Alicja, Aneta, Iwona, Edyta, Andrzej, Stanisław,
Marek, Józef, Henryk, Krzysztof, Władysław, Tadeusz, Piotr, Janusz, Tomasz,
Wojciech, Jakub, Marcin, Franciszek

Italian Caterina, Francesca, Paola, Giulia, Chiara, Giovanna, Alessandra, Gioia, An-
tonella, Giuseppina, Azzurra, Antonietta, Ambra, Alessia, Giorgia, Giovanni,
Carlo, Francesco, Giuseppe, Pietro, Luigi, Paolo, Alessandro, Angelo, Giorgio,
Domenico, Enrico, Stefano, Vincenzo, Matteo

Table 3: The words, i.e. names, I use as attribute sets in my WEAT experiments. Each
set contains an equal number of female (teal) and male (orange) names.

WEAT Experiment Setup With the new attribute sets defined above, I had devised three
WEAT experiments, a German-Turkish, German-Polish, and German-Italian one. I ran the
WEAT on the embeddings specified in §3.1 before debiasing, allowing me to analyse existing
origin bias in German word embeddings and to validate my WEAT implementation against
the scores published by Kurpicz-Briki (2020). In a second step, I compared the WEAT scores
after debiasing with respect to the different nationalities, embeddings, and to the scores before
debiasing.

Because of the four distinct attribute sets I used, I conducted multiple statistical tests at once,
which leads to themultiple comparisons problem: Given a large enough number of samples, it
becomes increasingly likely to eventually find statistically significant results due to chance. In
my case, for one experiment with three tests with a significance level of 0.05, there would be a
likelihood of up to 15% (0.05 + 0.05 + 0.05) of a significant difference by chance. I utilised the
Bonferroni correction (Bonferroni, 1936) to correct for this problem by dividing the significance
level by the number of tests. Accordingly, the significance level in my WEAT experiments was
α = 0.05

3 = 0.016.

The target sets, i.e., the lists of pleasant and unpleasant terms I used in my experiments re-
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mained the same as in Kurpicz-Briki (2020). An exception is the word “scheußlich” which
is replaced by “grausam” since “scheußlich” is missing from the vocabulary of the GloVe
model.

3.3 Bias Mitigation Methods

For the purpose of mitigating bias, I selected two existing debiasing algorithms, Hard Debiasing
(Bolukbasi et al., 2016) and DD-GloVe (An et al., 2022), and implemented, adapted and evaluated
them for origin bias in German embeddings. In the following section, I present the reasoning
for my selection, explain the methodology of the two methods and describe the process of
adaptation.

For both algorithms it is the case that I attempted debiasing not for a general “German-Foreigner”
bias-direction but instead for the specific nationalities Turkish, Polish, and Italian. This is analogous
to the WEAT data sets I created for bias evaluation and has the aim of discovering the differences
in bias between different countries of origin. Additionally, this decision facilitates the definition of
seed words which are necessary for both algorithms. This is because analysing more specific bias
categories results in a wider variety of available seed words since it is difficult to find seed words
relating to the more general concept of origin.

3.3.1 Adapting Hard Debiasing for German Origin Bias

As introduced in §2.4, Hard Debiasing is a post-processing algorithm proposed by Bolukbasi et al.
(2016) which aims to remove bias from pre-trained embeddings.

Rationale behind Choosing Hard Debiasing The work by Bolukbasi et al. (2016) constitutes
a groundbreaking paper on bias in word embeddings. It is well-established, referenced many
times in subsequent literature, and often used as a baseline for more sophisticated debiasing
approaches. The linear subspace assumption Bolukbasi et al. (2016) make has been questioned by
other researchers (Gonen and Goldberg, 2019) but can be mathematically proven (Vargas and
Cotterell, 2020).
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In this thesis, Hard Debiasing was implemented to serve as a reliable and easily transferable
method. The execution of Hard Debiasing is resource-efficient since it is not necessary to train
embeddings from scratch. Furthermore, since the algorithm is run post-hoc, it can be applied
to already existing embeddings. It is therefore potentially a feasible and easily accessible way of
improving the fairness of downstream NLP applications where pre-trained embeddings are already
in use.

German embedding training methods do not differ from those for English embeddings and thus
it is likely that the subspace assumption also holds for German origin bias. Because of this, I
expected Hard Debiasing to be effective in reducing origin bias in German embeddings. No matter
whether the debiasing would be successful or not, the outcome of this experiment could indicate
a way forward for future research attempting to improve debiasing on German embeddings or
debiasing for origin bias.

In the following, I present the three steps involved in the Hard Debiasing algorithm, first elaborating
on the mechanics of each step and then presenting the adjustments I made.

Defining the Origin-Direction The first step Bolukbasi et al. (2016) perform is to define the
bias-direction. As outlined in §2.3, they do this with a matrix of defining word pairs for which they
compute the first principal component. This is supposed to extract embedding features which
are characteristic for the difference between two concepts such as “national” versus “foreign”. In
particular, the authors utilise singular value decomposition to achieve this. Their definition is kept
general to allow for a higher-dimensional bias subspace. However, in their work as well as most
subsequent works including my thesis, the bias subspace is simply a two-dimensional direction,
i.e., a vector of the same length as the normal word vectors. An accordingly slightly simplified
bias-direction definition then becomes:

SVD
(

n∑
i=1

1
2
∑

w∈D

(w⃗ − µi)T (w⃗ − µi)
)

where Di is a defining pair (e.g., <Berlin, Istanbul>) and µi is the mean embedding of
Di. This means that they center the two embeddings of each defining pair, construct the
covariance matrix and then perform SVD. Part of an SVD calculation is factorising the covariance
matrix into UΣV T . Bolukbasi et al. (2016) then use the first row of V T (which has the
dimensions 300 × 1 for 300-dimensional embeddings) as the bias-direction. The approach
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emphasises the features that differentiate each word pair, which in theory should be the bias
components.

For the defining sets D which are needed for this step, I considered using first names as seen in
the tutorial example mentioned above, e.g., one defining word pair could be <Hans, Mustafa>.
However, this has two disadvantages. First, the debiasing algorithm performs a pair-wise centering
of each word pair in the defining set as described above, but it is challenging to match pairs of
first names together. For example, asking the question of “Which Turkish name is equivalent
to the German name Sabine?” yields no fruitful answers. Frequency could be considered, but
there are many more factors than just frequency influencing a name’s embedding. Second, first
names are already used in the WEAT evaluation. As described in §2.4, it has been criticised in
literature (Gonen and Goldberg, 2019; Ethayarajh et al., 2019) that some debiasing algorithms
only remove bias from words they have explicitly been told are biased. By not also using first
names for defining the origin-direction, I can later use them in the WEAT to evaluate whether the
capabilties of Hard Debiasing extend beyond just the words which it has explicitly been told are
related to origin.

Instead of using first names, I manually created sets of defining pairs for German-Turkish, German-
Polish and German-Italian debiasing. The pairs can be found in Table 4. Bolukbasi et al. (2016)
define 10 pairs for their gender definition through a manual process they do not specify further.
They then perform a human survey to confirm that their word pairs align with crowdworkers’
idea of gender. I did not conduct such a survey, but the word pairs I selected are, for the
most part, simply morphological variations of <deutscher, türke>, <deutscher, pole>,
and <deutscher, italiener> and should therefore align well with the concept of “people of
German origin versus people of Turkish/Polish/Italian origin”. The issue, rather, lies in whether
these defining sets might be too restrictive compared to Bolukbasi et al.’s gender seeds which
contain a wider variety of words. I considered including word pairs such as <berlin, instanbul>
but decided against it to keep the origin definition free of potential other biases that might be
associated with such word pairs. More general word pairs were still included in the debiasing
process, but in a later step in the form of equalising word pairs.

Removing Origin Component from Neutral Words After identifying the origin-direction,
the next step in the Hard Debiasing algorithm is to “Neutralise”. This happens by redefining a
word’s vector w⃗ to be w⃗’s projection onto the orthogonal origin-direction, thereby removing the
component of w⃗ that lies in the origin-direction. Since I worked only with a bias-direction in the
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Nationalities Word Pairs
German ↔ Turkish <deutscher, türke>, <deutsche, türkin>, <deutschen,

türken>, <deutschen, türkinnen>, <deutschland, türkei>,
<deutschlands, türkei>, <deutsch, türkisch>, <deutsches,
türkisches>, <deutscher, türkischer>, <deutsche,
türkische>, <germanisch, osmanisch>, <germane, osmane>,
<deutschsprachig, türkischsprachig>, <deutschstämmig,
türkischstämmig>

German ↔ Polish <deutscher, pole>, <deutsche, polin>, <deutschland,
polen>, <deutsch, polnisch>, <deutsches,
polnisches>, <deutscher, polnischer>, <deutsche,
polnische>,<deutschsprachig, polnischsprachig>,
<deutschstämmig, polnischstämmig>

German ↔ Italian <deutscher, italiener>, <deutsche, italienerin>,
<deutschen, italienern>, <deutschen, italienerns>,
<deutschen, italienerinnen>, <deutschland,
italien>, <deutschlands, italiens>, <deutsch,
italienisch>, <deutsches, italienisches>,
<deutscher, italienischer>, <deutsche, italienische>,
<deutschsprachig, italienischsprachig>, <deutschstämmig,
italienischstämmig>

Table 4: Defining pairs chosen to calculate the origin-direction for Hard Debiasing on the
German-Turkish, German-Polish, and German-Italian axis.

form of a vector and because all vectors are normalised, the projection of w⃗ onto the bias-direction
b, called wB can be expressed as wb = (w⃗ · b) · b, and the projection onto the orthogonal direction
as w⃗ − wb. After neutralising, the embedding is again normalised. All together, this step can be
denoted as

w⃗ = w⃗ − wb

||w⃗ − wb||

Only words which do not actually relate to the origin concept should be debiased, e.g., “blau”
should not contain any origin content, but “Migrant” should. I will call words which should not be
related to origin origin-neutral words. Because this is the majority of words, it is easier to determine
the complement of them, which I call origin-specific words.

Bolukbasi et al. (2016) derive these bias-specific words “using dictionary definitions”, but do not
elaborate on their methodology. Inspired by this idea, I derived origin-specific words by extracting
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entries from a dictionary that contain at least one of the defining words (specified above in Table
4).

The dictionary I use for this purpose is Duden, Deutsches Universalwörterbuch (abbreviated
DDUW). The Duden, nowadays published by Cornelsen, was market-dominating among Ger-
man dictionaries for a long time (Sauer, 1988) and is now still one of the most important
reference books for the German language. I utilised the DDUW in its 2011 version, which
is the seventh edition of the dictionary. It includes 172,663 entries spanning 124,944 unique
tokens.

In the DDUW, I inspected for each entry if one of the defining words was present in that entry’s
definitional text. For this purpose, I capitalised the defining terms where appropriate, for instance,
I checked for “Türkei” instead of “türkei”, but “türkisch” remained as is. If any of the defining
words were present, I added the current word to the list of origin-specific words. For example, the
dictionary entry for “Bundeskanzlerin” contained the word “Deutschland”, so it was included in
the list of origin-specific words. I created three separate sets of origin-specific words: One for
my German-Turkish experiments, one for German-Polish, and one for Italian-Polish. The German
names were identical in all three cases.

The resulting word sets were 254 words large for German-Turkish, 270 words large for German-
Polish, and 311 words large for German-Italian. To find the respective origin-neutral words, which
is what is relevant for the “Neutralise” step, I then took the complement of the model’s vocabulary
with the origin-specific words.

Equalising Origin-Neutral Words The third step of Hard Debiasing is equalising origin-
neutral words to be equidistant to a predefined set of equality word pairs E , as mentioned in
§2.4. Bolukbasi et al. (2016) again define this step for a more general case where the user
would have multiple equality sets. Since I work with only one data set, I slightly simplify their
equations.

For each equality pair (equality set in Bolukbasi et al.’s notation) (e1, e2) ∈ E , its average
µ = e⃗1 + e⃗2

2 is projected onto the orthogonal origin-direction: µB = µ−µB.

The embeddings for e1 and e2 are then redefined as two components.

The first is the embedding’s part which lies in the space orthogonal to the origin-direction. This
part is simply equated to µB because the two words should be identical in their content except
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for their relationship to origin. For example,
−−−−→
Berlin and

−−−−−→
Istanbul express the same concept

of being the biggest cities of each country, except one relates to Germany and the other to
Türkiye.

The second component of the equalised embedding is the part which lies in the bias-direction, called
eB. It is centered (e⃗B − µB) to be symmetrically balanced across the origin-direction and then
re-scaled to unit length, i.e., multiplied by

√
1−||µB |2

||e⃗B−µB || . This has the effect that the origin component
of the two embeddings is now the same except for its direction.

All told, this results in the equation

e⃗ = µB +
√

1 − ||µB||2 · e⃗B − µB

||e⃗B − µB||

Bolukbasi et al. (2016) do not specify how they create their equality data set except that it is
“crowdsourced”. I utilised all word pairs I selected as defining word pairs (see Table 4). Additionally,
I supplemented my equality sets with words from multiple nationality-specific categories, namely
typical cuisine, currency, notable personalities, prominent landmarks, national dances, and biggest
cities.

To collect words for each of these categories, I consulted Wikipedia’s category listings in which
for various categories such as “Italian cuisine” all articles which treat Italian cuisine are listed. I
examined the Wikipedia entries for the seven categories listed above and then confirmed whether
the items listed there have an entry in the Duden dictionary to confirm their relevancy and
frequency of use in the German language.

These items then needed to be matched into pairs. I matched geographical entities to German
equivalents by size; for example, I matched the (partly) Turkish river Euphrat to the (partly) German
river Rhein. Famous persons I matched by occupation or position, for example “Merkel” is matched
to “Erdoğan”. Wherever possible, food was matched to other similar food, for example “Kebab”
and “Stulle” were matched since both dishes are a type of filled bread. National dances were
matched in the same way. As for currency, I equated “Euro” to “Złoty” for Poland and to “Lira” for
Türkiye respectively, and omitted this equality pair for Italy since Germany and Italy use the same
currency. The final list of equality sets can be found in Table 5.
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Nationalities Equalising Word Pairs
German ↔ Turkish ..., <berlin, istanbul>, <hamburg, ankara>, <münchen,

izmir>, <köln, bursa>, <frankfurt, adana>, <stuttgart,
gaziantep>, <düsseldorf, konya>, <leipzig, antalya>,
<dortmund, kayseri>, <christlich, muslimisch>, <euro,
lira>, <schnitzel, köfte>, <strudel, börek>, <sauermilch,
kefir>, <flammkuchen, lahmacun>, <kohlrouladen, dolma>,
<hackbällchen, köfte>, <brötchen, pide>, <stulle,
kebab>, <walzer, hora>, <merkel, erdoğan>, <europäisch,
asiatisch>, <rhein, euphrat>, <elbe, bosporus>, <alpen,
ararat>, <ostseeküste, ägäis>, <bismarck, atatürk>

German ↔ Polish ..., <euro, złoty>, <berlin, warschau>, <hamburg,
krakau>, <münchen, lodz>, <köln, breslau>, <frankfurt,
posen>, <stuttgart, danzig>, <düsseldorf, stettin>,
<leipzig, bromberg>, <dortmund, lublin>, <currywurst,
bigos>, <grießsuppe, borschtsch>, <mohnkuchen, mazurek>,
<maultausche, pirogge>, <walzer, mazurka>, <gardetanz,
krakowiak>, <siebenschritt, polka>, <emsland, masuren>,
<zugspitze, tatra>, <rügen, wollin>

German ↔ Italian ..., <berlin, rom>, <hamburg, mailand>, <münchen,
neapel>, <köln, turin>, <frankfurt, palermo>, <stuttgart,
genua>, <düsseldorf, bologna>, <leipzig, florenz>,
<dortmund, bari>, <allgäu, toskana>, <ostseeküste,
apulien>, <bratensoße, balsamico>, <jägermeister,
amaretto>, <kloß, arancino>, <bratwurst, antipasto>,
<stulle, focaccia>, <maultauschen, tortellini>

Table 5: Word pair sets used in the “Equalise” step of the Hard Debiasing algorithm. A
separate set is used for the experiments concerning German-Turkish, German-Polish and
German-Italian bias. Terms related to one of the nationalities are matched up to a similar
term of the opposing country. Additionally to the terms shown here, all defining word
pairs shown in Table 4 are also part of the equalising word pair sets. They are left out in
this table for brevity, but indicated by an ellipsis.

After the creation of the origin-defining, origin-neutral and equality sets, Hard Debiasing is ready
to be executed. To this end I utilised the code published by Bolukbasi et al. on GitHub20 with no
further changes.

20 https://github.com/tolga-b/debiaswe
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3.3.2 Adapting DD-GloVe for German Origin Bias

The second debiasing method I examined in this thesis was DD-GloVe as proposed by An et al.
(2022). Different from Hard Debiasing, DD-GloVe is a train-time algorithm which adjusts GloVe’s
training objectives to produce bias-reduced embeddings. In the following, I am going to first
explain the components involved in the DD-GloVe method and how I adapted them to origin
bias in German embeddings, and then summarise my training setup including training data and
hyperparameters.

Rationale behind Choosing DD-GloVe DD-GloVe is a novel approach to debiasing. It
has not yet been reproduced or reviewed in subsequent works, but it provides a new per-
spective and promising results, especially with regards to mitigating indirect as well as direct
bias.

It defines bias not only as the difference between certain defining word pairs, but additionally —
and extensively — leverages dictionary definitions as an external source to define bias. Dictionary
definitions are by no means perfectly bias-free. One problem they exhibit is that, since they are
often written primarily by White authors and for White audiences (Murphy, 1991), they omit
word senses used by non-White populations (Murphy, 1998). However, unlike other data sources
such as Wikipedia, dictionaries are professionally proofread, deliberately worded neutrally, and deal
with words detached from context, which means that the context of tokens has less potential to
introduce bias. I therefore predicted the dictionary-debiasing approach to potentially be a valuable
addition to debiasing research.

Another intriguing feature of DD-GloVe was that unlike for almost all other current debiasing
methods, no extensive seed lists to define the bias concept are necessary. Only two initial seed words
need to be given and the algorithm then automatically expands this to a longer list. This could
prove to be useful for a difficult to define concept such as origin.

Additional potential strengths of DD-GloVe were that according to An et al. (2022), the model is
not only successful on various bias metrics but even improves the embeddings’ performance on
semantic evaluation tasks due to the additional information learned from dictionary definitions.
Last but not least, the authors make their vectors and code publicly available which makes
reproduction decidedly easier.
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In the next subsections, I explain the DD-GloVe model including its dictionary-guided loss functions,
the data used and created by me, and my training setup.

Creating Dictionary Embeddings Fundamental to the DD-GloVe algorithm is the choice of
dictionary. An et al. (2022) presumably used definitions from multiple Oxford dictionaries, in
which case they had approximately 350,000 dictionary entries at their disposal. I am going to
elaborate on the uncertainty of this assumption in §4.3.

For the German dictionary I considered multiple options.

With approximately 1,099,000 entries, the German version of Wikipedia is the largest free online
resource available. However, raw Wiktionary data as published in Wiktionary dumps is structurally
complex, and currently no parser for these files is publicly available. Furthermore, Wiktionary is
a crowd-sourced resource and I hypothesised that it might be more susceptible to unconscious
biases than a dictionary that was professionally proofread and edited by established publishing
houses.

I therefore again utilised the Duden Universalwörterbuch, which I introduced in §3.3.1. To
re-iterate, the edition of DDUW I utilise comprises 172,663 entries, which is at least 50.62%
smaller than the dictionary used by An et al. (2022). I retrieved definitions for 59,721 tokens,
out of which 17,957 tokens had multiple entries. It presents no immediate problem if no entry is
found for a token since the DD-GloVe loss functions which require a dictionary entry are simply
skipped in such cases.

An et al. (2022) calculate a word w’s definition embedding d(w) by taking the mean of the
embeddings for all words in w’s dictionary definition:

d(w) = 1
|Dw|

∑
wi∈D

w⃗i

where Dw is a list of all definition tokens of w and wi ∈ Dw is one token in this list. It is possible
for tokens to occur multiple times in D. An et al. (2022) motivate this approach by virtue of it
being “[simple] but empirically effective”.

The authors emphasise that these definition embeddings are “trained from scratch” at the same
time as all other embeddings in the model. This is necessarily the case because the definition
embeddings are defined as being composed of regular word embeddings, and, as An et al. (2022)
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state, using pre-trained embeddings to compose the definition embeddings would introduce bias
contained in those pre-trained word embeddings to the dictionary embeddings. By training them
at the same time, DD-GloVe aims to create a synergy where the definition embeddings start
out bias-free (due to random initialisation) and remain as neutral as possible by continually
influencing the word embeddings it is comprised of to orient themselves towards the definition
embeddings.

Approximating the Origin-Direction Like Hard Debiasing, DD-GloVe too uses a bias-direction
to determine how to realign word vectors. Unlike Hard Debiasing, in DD-GloVe the bias-
direction is used only for one part of a multi-step debiasing process, as expanded upon in the
next subsection. Nevertheless, the accuracy of approximating the bias-direction has a large
effect on the overall success of the model, which I explore in later parts of this thesis (§4.3,
§5.5).

For two sets of seed words A1 and A2 (named A for attribute), An et al. (2022) define the
bias-direction vector b (in their notation g for gender) as

b = 1
|A1|

∑
w∈A1

w⃗ − 1
|A2|

∑
w∈A2

w⃗

which is simply the difference vector between the means of the two seed word sets.

Part of DD-GloVe’s functionality is an algorithm for automatically defining these seed word sets
A based on two user-provided initial seed words s1 and s2. The algorithm first calculates the
difference between the definition embeddings of s1 and s2, denoted as binitial = d(s1) − d(s2).
Then, for all words w in the vocabulary their definition embedding d(w) is projected onto binitial,
yielding a bias value b(w). The words are sorted by their assigned bias value b(w) and the
words with the top n highest and lowest scores are added to A1 or A2 respectively. Both
very high and very low (i.e., negative) resulting values of the projection onto the initial bias
definition axis, will, in theory, indicate that these words are strongly associated with the bias
concept.

The size of the sets n is determined empirically. An et al. (2022) recommend a smaller n

for “attributes that have a smaller number of associated words, such as race”, but do not
specify an exact size. Guided by their choice of n = 30 for gender bias, I selected n = 10,
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in alignment with the authors’ recommendation to choose a smaller n for concepts such as
race.

Furthermore, due to the definition embeddings being learned along with all other embeddings, and
the results of the seed word generation algorithm thus potentially changing with each iteration,
the algorithm can be run multiple times throughout training. For racial debiasing, the authors run
it in each of the first five iterations and then again every ten iterations, which I adopted for my
experiments.

As with Hard Debiasing, I treated the origin setting as three separate debiasing scenarios and
ran DD-GloVe with initial seed words for German–Turkish, German–Polish, and German–Italian
bias. My initial seeds were <deutscher, türke>, <deutscher, pole>, and <deutscher,
italiener>.

DD-GloVe Loss Functions Explained In order to gain insights into the results of de-
biasing with DD-GloVe, it is helpful to understand the loss functions involved in its train-
ing.

The overall training paradigm of the original GloVe model (Pennington et al., 2014) consists of
minimising the difference between logarithmic word co-occurrence and the respective embeddings’
similarity defined, with the optimisation typically being implemented as stochastic gradient
descent.

An et al. (2022) re-defined the loss functions used in this optimisation process. They constructed
three entirely new loss terms Jortho, Jproj and Jdef , and additionally altered the original GloVe
loss function to be bias-aware (JG−bias). They combined these four loss functions and defined
DD-GloVe as

J = JG−bias + βJortho + γJproj + δJdef

where the hyperparameters β, γ and δ control the influence of each loss term. These hyperparam-
eters the authors typically set to be fairly small — between 0.0001 and 0.2 — leaving JG−bias as
the primary influence on the training process.
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Bias-aware GloVe loss JG−bias also constitutes the most complex out of the four loss functions.
Its basic idea is to assign weights to individual co-occurrences in the co-occurrence matrix with
the goal of balancing out unequal distributions in the training data. This way, the authors intend
to achieve an effect similar to training on a corpus that has been balanced with data substitution
methods (see §2.4).

The weight assigned to a co-occurrence pair depends on its bias. The bias o(w)21 of a word w

is calculated as the difference between w’s projection p(w) onto the difference vector s⃗1 − s⃗2

and the projection (d(w)) of w’s definition embedding onto s⃗1 − s⃗2. Here, s⃗1 − s⃗2 is a simple
expression of the origin-direction defined by the initial seed pair (s1, s2). The bias definition o(w)
can be interpreted as the difference in origin content p in a word’s embedding and its definition
embedding, where a larger difference indicates bias since the definition embedding provides a
neutral reference point. I formalise this as

o(w) = p(w) − p(d(w))

This bias o and origin association p is then calculated for each word pair (w, w̃) in the co-occurrence
matrix and a weight ω(w, w̃) is assigned based on the resulting values.

If the two co-occurring words are associated with opposite origin concepts, as would for example
be the case for “Istanbul” and “German”, a positive weight is assigned because the goal is to
create a more balanced co-occurrence matrix. Conversely, for word pairs associated with the same
origin-direction, a negative weight is assigned. This direction can be expressed with the signs of
p(w) and p(w) as 1 − sgn(p(w)) · sgn(p(w̃)). The magnitude of the weight is set to whichever is
the higher value out of o(w) and o(w̃), i.e., max(o(w), o(w̃)), meaning that the effect is weaker
for bias-neutral words and stronger for bias-related words. Additionally, a constant α scales the
weight function. This all comes together to

ω(w, w̃) = 1 − α · sgn(p(w)) · sgn(p(w̃)) · max(o(w), o(w̃))

An et al. (2022) recommended α to be set to 0.4, which keeps ω(w, w̃) in a range of about
0.9–1.1. I adopted this value for my own experiments.

21 Named o for origin.
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Unlike the other new loss terms An et al. (2022) define, bias-aware GloVe loss is not added to the
overall GloVe loss as an additional summand, but integrated directly into the existing main GloVe
function. There it can directly influence the original GloVe co-occurrence weight calculations.
This results in a final “bias-aware GloVe loss” JG−bias of

JG−bias =
V∑

i,j=1
ω(wi, w̃j)f(Xij)

(
wT

i jj + bi + b̃j − log(Xij)
)2

which is unchanged from the original GloVe loss except for minor notation details and the
integration of ω.

Projection Loss While the bias-aware GloVe loss aims to achieve results reminiscent of Maudslay
et al. (2019) or Lu et al. (2020), the projection loss shows similarities to the Hard Debiasing
method. Instead of adjusting the projection of all neutral words onto the bias-direction to be
zero, though, An et al. (2022) encouraged a word’s projection onto the bias-direction to be
similar to the projection of its definition embedding onto the bias-direction. They expressed this
as

Jproj(w) =
∥∥∥∥∥w⃗ · o

o · o
o − d(w) · o

o · o
o

∥∥∥∥∥
which captures the difference between the vector projections of word vector w⃗ onto the origin-
direction o and w’s definition embedding d(w) onto the origin-direction o. The Euclidean norm of
the difference vector then constitutes the projection loss.

For words without a dictionary definition, the authors set d(w) · o to be zero, assuming that the
word does not contain bias content in such a case. Different than in Hard Debiasing, this function
is applied to all words in the vocabulary and not just neutral or biased words because the authors
hypothesised that the dictionary definition’s embedding alone is able to indicate the whether a
word is related to the bias concept or not.

Orthogonal Loss On top of defining a function for mitigating a specific bias such as origin bias,
DD-GloVe also includes a loss function intended for debiasing general biases. The “orthogonality”
refers to the component of a word embedding w⃗ which lies in the subspace orthogonal to w⃗’s
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definition embedding d(w) and which is encouraged to be dropped by the model. Mathematically,
the authors define this as

ϕ(w, (d(w)) = w⃗ − w⃗ · d(w)
d(w) · d(w)d(w)

which is the vector projection of w⃗ onto d(w) removed from w⃗. This function ϕ(w, (d(w))
is expected to express undesired and likely biased information in w⃗ because An et al. (2022)
hypothesise that any information not contained in dictionary embeddings is unnecessary information.
The final orthogonal loss function formulated is

Jortho(w) = (ϕ(w, (d(w)) · w⃗)2

which minimises the squared dot product between w⃗ and ϕ(w, d(w)) to encourage dissimilarity
between the two vectors. The penalty term would be higher when there is a larger projection of w⃗

onto the orthogonal subspace, thus promoting the model to reduce the impact of information not
aligned with d(w).

If a word does not have a dictionary definition assigned, this loss term is ignored.

Definition Loss Lastly, An et al. (2022) declare a fourth loss function which also leverages
dictionary definitions, but targets improvement in the embeddings’ semantic performance instead
of bias mitigation. Where orthogonal loss encourages the model to remove embedding components
orthogonal to their respective dictionary definitions, definition loss promotes the model to generally
increase similarity between an embedding and its definition embedding. This is defined simply
as the L1 norm between the difference of a word embedding w⃗ and its definition embedding
d(w):

Jdef (w) = ||w⃗ − d(w)||1

This difference is lower when the word embedding in question and its definition embedding are
more similar.

51



Training Setup For training my own DD-GloVe models, I set the parameters which weight the
different loss function to be β = 0.0001, γ = 0.05, and δ = 0.001. These values were taken from
An et al.’s experiments concerning racial bias and not tuned specifically for my data. I assumed
that even without fine-tuning, it should become clear whether the method is reproducible and
generally viable for German origin bias or not.

All other general GloVe settings such as number of features or vocabulary size are identical to
the specifications I made in §3.1 regarding the regular (i.e., non-debiased) GloVe embeddings I
trained. A description of the Wikipedia training data I use can be found at the same place. I
elaborated on my dictionary source in §3.3.2.

In their basic version, my experiments regarding DD-GloVe consisted of training regular GloVe
embeddings as well as “debiased” embeddings using DD-GloVe and comparing their performance
on semantic and bias evaluation tasks as specified in this chapter. As will become evident in the
next chapter, more extensive insights into the performance of DD-GloVe became necessary to
understand the results of these experiments. For this reason, some additional experimental setups
are going to be presented in §4.3.
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4 Results

In this chapter, I present the results of my experiments as defined in chapter 3. I organise my
findings by analysis method. First I show results of my semantic evaluation (explained in §3.2.1)
on the original embeddings (determined in §3.1) as well on the embeddings after debiasing (see
§3.3). Then I present an analysis regarding bias before and after debiasing using the WEAT
(see §3.2.3). Finally, in order to better understand the results of my attempts at debiasing with
DD-GloVe, I dedicate a section of this chapter to carrying out and reporting on additional post-hoc
experiments regarding this model.

4.1 Semantic Evaluation with Word Pair Similarity

The first part of my evaluation concerns the semantic performance of the two different embeddings
I examined.

Validation Experiments

Before analysing the effects of debiasing on the semantic performance of the embeddings, I first
confirmed that the performance of the unchanged embeddings is in line with values reported
in literature. To do so, I report word pair similarity scores using the original GUR350 data set
(Gurevych, 2006) introduced in §3.2.1. Out-of-vocabulary pairs were here assumed to have a
similarity of zero.

Embedding Measured ρ Previously Reported ρ
Pre-trained GloVe 0.45 0.49 (Forthmann and Doebler, 2022)
Self-trained GloVe 0.44 0.49 (Forthmann and Doebler, 2022)
Pre-trained fastText 0.72 0.70 (Bojanowski et al., 2017)

Table 6: Spearman’s rank correlation coefficients ρ for word pair similarity on the original
GUR350 data (Gurevych, 2006) set measured using different word embeddings. Details
on the used embeddings can be found in §3.1. The table compares the measured ρ values
with previously reported values from the literature.
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Table 6 shows the results for the original word embeddings in comparison to values reported
in literature. It can be seen that the values were generally within the same range as pre-
viously published results. This indicates that my implementation of the word pair similarity
measurement, the GUR350 data set, and the embeddings were all fundamentally working as
intended.

The 0.02 points difference for the fastText embeddings might be explained by the fastText embed-
dings published on https://fasttext.cc being more recent than those analysed in Bojanowski
et al. (2017) and therefore possibly being trained on a larger Wikipedia dump.

The values reported by Forthmann and Doebler (2022) are, to the best of my knowledge, the
only published values for a word pair similarity task on German GloVe embeddings. However, the
authors trained their GloVe model on the deWaC corpus (Baroni et al., 2009), a collection of
German web text, instead of Wikipedia and the word pair similarity data set they use appears
to be a translated version of WordSim-353 (Finkelstein et al., 2001). The comparison of the
GloVe values should therefore be taken with a grain of salt and can only serve as an approximate
guideline.

Notably, the performance of both of the German GloVe embeddings I examined was significantly
lower than what is usually reported for English GloVe models. Pennington et al. (2014), for example,
report a coefficient ρ of 0.66 on the WordSim-353 data set. However, since the pre-training
embeddings by Deepset (see §3.1), the embeddings trained by Forthmann and Doebler (2022) and
the embeddings I trained all perform in this much lower range, I assume that this poor performance
is not a flaw in my methods but due to the model itself.

Modifying GUR350

The GUR350 word pair similarity set created by Gurevych (2006) contains 49 words that were
outside the vocabulary of the GloVe model I trained as described in §3.1. The 49 tokens are listed
in Table 7. As explained in §3.2.1, for the purpose of analysing the difference in performance
before and after debiasing, I excluded these word pairs from the data set instead of assuming
their similarity to be zero. Excluding all word pairs in which one of the words is out-of-vocabulary
leaves one with 283 remaining word pairs.

A possible concern with removing a significant part of the data set might be that the task becomes
easier or harder for the model because, for example, harder words might be more likely to be
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stellenanzeige gepäckkontrolle makake kopfairbag
weißblau dieselversion drehfreudig gehaltsunterschied
flaschenöffner frühlingssonne frustrieren leidensgenosse
geschirrdurcheinander urwaldhaus herausstreichen hirnsignal
kaffeetasse tv-kamera hinaufklettern krebserkennung
premium-hersteller niederschmetternd reiseschutzpass plätschernd
prozentzeichen sandwich-konzept betrugshandlung küchenschrank
frontalkollision suchmaschinenbetreiber suchstrategie topmanagement
arbeitssuchender entwicklungschef gepäcknetz inaugurationsmesse
portokosten beziehungsarbeit heimgang lebensbedürnis
quartalsumfrage flachlegen sports-tourer volierenzelt
wegrennen berlin-kreuzberg rot-weiß a-säule

Table 7: Words in the GUR-350 word pair similarity data set (Gurevych, 2006) which are
out of vocabulary for the GloVe model I train on German Wikipedia text.

Figure 4: The number of word pairs in the GUR-350 word pair similarity data (Gurevych,
2006) set with a certain similarity ranking. Word pairs can have rankings in 0.5 step
increments ranging [0.0 − 4.0]. Light orange bars show the number in the original data set
and dark orange bars after removing the words specified in Table 7. The orange (original)
versus blue (after removing) lines are Kernel Density Estimate plots showing that the
distribution remains approximately the same.
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fastText GloVe (self-trained)
original 0.7011 0.5697

after HD
German ↔ Turkish 0.7073 (∆0.0062) 0.5806 (∆0.0109)
German ↔ Polish 0.7027 (∆0.0016) 0.5805 (∆0.0108)
German ↔ Italian 0.7069 (∆0.0058) 0.5803 (∆0.0106)

after DD
German ↔ Turkish n/a 0.5807 (∆0.0110)
German ↔ Polish n/a 0.5806 (∆0.0109)
German ↔ Italian n/a 0.5802 (∆0.0105)

Table 8: Results for the word pair similarity task before and after debiasing. Each cell shows
the Spearman rank correlation coefficient ρ calculated for the GUR283 data set. Columns
indicate the embedding technique and rows indicate whether the original embedding or
the embedding after debiasing was used. For the debiasing rows, the debiased nationality
is additionally indicated. HD refers to Hard Debiasing (Bolukbasi et al., 2016) and DD to
Dictionary Debiasing (An et al., 2022). Higher values are better. The values in brackets
indicate the change after debiasing compared to the original embedding.

outside the model’s vocabulary and therefore more likely to be removed. To analyse this, I
measured the distribution of the word pairs’ similarity ratings in the original GUR350 data set
and in the reduced version. Figure 4 shows that removing these word pairs did not change the
distribution of the data, suggesting that decreasing the data set size in this matter does not make
the task easier or harder. It does still decrease the stability of the results since the data set is
smaller.

I used the reduced version of GUR350 in the experiments concerning the performance difference
before versus after debiasing and refer to it as GUR283. Table 8 shows the effect debiasing had
on the word pair similarity task.

Effect of Debiasing

The embeddings’ performance did not decrease after debiasing compared to the original value
in any of the cases. This indicates that no semantic features other than those related to origin
bias were removed during the debiasing process. In fact, all scores were marginally better after
debiasing. The trend towards improvement might be explained when one considers the biased
information contained in embeddings to be redundant information which sometimes obscures
more meaningful components. This would be in line with the GloVe scores showing a greater
improvement on the word pair similarity task than the fastText scores, since the WEAT analysis
shows that the GloVe embeddings contain greater origin bias than the fastText embeddings

56



(see §4.2). Overall, the debiasing algorithms did not have a strong effect on the embeddings’
performance.

The scores for the original embeddings, displayed in Table 8, can also be compared to the scores
the embeddings achieved on the full GUR350 data set, as reported in Table 6. It can be seen
that the score for the self-trained GloVe embeddings was 0.1297 points higher after removing
out-of-vocabulary words. This was to be expected since the model is no longer punished for
out-of-vocabulary words with a default similarity value of zero, as explained in §3.2.1. Since
fastText embeddings are capable of handling out-of-vocabulary words anyway, no improvement can
be noted for them. Instead, they scored 0.0189 points lower, perhaps since the removed word pairs
happened to be ones which the model had previously judged well.

4.2 Bias Analysis with the WEAT

After assessing the basic semantic performance of the embeddings used in my experiments, I
now turn towards the main bias analysis of this thesis and present the results of my WEAT
experiments.

Bias Measured in Original Embeddings

As explained in §3.2.2, I created three WEAT data sets: One with German and Turkish names,
one with German and Polish names, and one with German and Italian names (see Table 3). Table
9 reports the origin bias measured on the original (i.e. non-debiased) embeddings using these
different WEAT attribute lists. The mean µ of the Turkish, Polish and Italian WEAT scores is
included to approximate an understanding of the origin bias contained in German word embeddings
across different nationalities.

Validation Experiments I first compared my WEAT implementation to the results published
in Kurpicz-Briki (2020). In particular, I compared Kurpicz-Briki’s WEAT results for her translated
WEAT 5 experiment, i.e., her measurement of origin bias using general “Swiss names” versus
“Foreign names” to a reproduction of the same experiment. In this particular case, I did not
use my adapted WEAT name lists, but the ones given in Kurpicz-Briki (2020). The author did
not measure bias on GloVe embeddings, so only values for fastText are shown in the respective
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Test Data fastText GloVe (self-trained)
d p d p

Kurpicz-Briki (2020) WEAT 5 1.1340 < 10−3∗ n/a n/a
Kurpicz-Briki (2020) Reproduction 0.9800 0.0042∗ 1.7889 < 10−4∗
German ↔ Turkish 1.3571 0.0109∗ 1.8321 < 10−4∗
German ↔ Polish 0.2829 0.5185 1.7301 < 10−4∗
German ↔ Italian 1.0331 0.1082 1.4650 0.0040∗
µ {Turkish, Polish, Italian} 0.8910 0.2125 1.6757 0.0013∗

Table 9: WEAT results for German fastText and GloVe embeddings before debiasing. The
first column indicates which WEAT data set was used, with the last row showing an
average of the previous three. Absolute effect size (Cohen’s d) and p-value of the WEAT
permutation test are reported. Smaller values of d and higher values of p mean less origin
bias. Statistically significant bias (p < 0.016̄) is marked with an asterisk.

row in Table 9. The fastText version used by Kurpicz-Briki (2020) is different to the fastText
embeddings I used. Kurpicz-Briki (2020) used embeddings trained on CommonCrawl whereas
I used a version trained only on Wikipedia. This difference explains why my measured values
were slightly different than those reported by Kurpicz-Briki (2020). In both cases, however, a
significant bias was found.

I extended Kurpicz-Briki’s results by also measuring origin bias in GloVe using the same attribute
lists, i.e., the translation by Kurpicz-Briki (2020). While both fastText and GloVe embeddings
showed significant origin bias in this experiment, the results for the GloVe embeddings were much
more pronounced. The effect size for GloVe is almost twice as large and the p-value is close to
zero compared to 0.0042 for fastText.

Effect of Adapted WEAT Seeds Looking at the rest of Table 9, I analysed the effect that
my changed attribute lists, which differentiate between different nationalities, had on the WEAT
results. A continuing stark difference between fastText and GloVe embeddings can be observed.
Considering the mean µ of the three nationalities, it is apparent that while the values for GloVe
were similar to those in the Kurpicz-Briki (2020) reproduction, overall no significant bias could be
measured for the fastText embeddings. In fact, the fastText measurements were considerably far
apart from the significance level 1.6̄%.

As concerns the different nationalities, it can be seen that in the case of the fastText embeddings,
significance bias was measuring using the German-Turkish name lists but not with the German-
Polish or German-Italian ones. The GloVe results mirror this in a less extreme fashion. Here,
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Turkish Polish ItalianEmbeddings
d ↓ p ↑ d ↓ p ↑ d ↓ p ↑

fastText original 1.3571 0.0109∗ 0.2829 0.5185 1.0331 0.1082
fastText HD Turkish 1.1332 0.0573 0.2123 0.5639 0.9480 0.1469
fastText HD Polish 1.3612 0.0103∗ 0.1786 0.5699 1.0477 0.1018
fastText HD Italian 1.3299 0.0139∗ 0.1901 0.5747 0.5896 0.3510
GloVe original 1.8321 < 10−4∗ 1.7301 < 10−4∗ 1.4650 0.0004∗
GloVe HD Turkish 1.5220 0.0010∗ 1.5315 0.0003∗ 1.1688 0.0115∗
GloVe HD Polish 1.7833 < 10−4∗ 1.3190 0.0032∗ 1.2579 0.0046∗
GloVe HD Italian 1.7943 < 10−4∗ 1.6358 < 10−4∗ 0.8406 0.0538
GloVe DD Turkish 1.8209 < 10−4∗ 1.6582 < 10−4∗ 1.4522 < 10−4∗
GloVe DD Polish 1.7717 < 10−4∗ 1.5567 < 10−4∗ 1.3303 < 10−4∗
GloVe DD Italian 1.7891 < 10−4∗ 1.7005 < 10−4∗ 1.3057 0.0001∗

Table 10: Cohen’s d and p-value for WEAT permutation test before and after running
debiasing algorithms. Hard Debiasing (HD) and Dictionary Debiasing (DD) results are
shown for German-Turkish, German-Polish, and German-Italian debiasing attempts, with
WEAT data sets for German-Turkish, German-Polish, and German-Italian names. Light
green fields highlight matching embeddings and WEAT tests in regards to nationality.
Statistically significant bias (p < 0.016̄) is marked with an asterisk.

significant origin bias could be shown for all three nationalities, but the measured bias effect size
decreases slightly from Turkish over Polish to Italian. The difference between fastText and GloVe
embeddings was less pronounced for the Turkish WEAT compared to the other two tests, in which
the p-values were very high for fastText but very low for GloVe. The Polish measurement stands
out among the fastText results because of its unusually high p-value of 0.5185 and its small effect
size. For the other two nationalities, the fastText embeddings still produced a large effect size
despite their high p-values.

Bias Measured After Debiasing Attempts

The second part of my WEAT experiments compared the bias measured before versus af-
ter debiasing, i.e., the success of the two debiasing methods. Table 10 shows these re-
sults.

Both Hard Debiasing and Dictionary Debiasing were carried out for specific nationalities and
not general origin bias, as explained in §3.3. The various embeddings were all measured on all
three WEAT data sets — Turkish, Polish, and Italian — even though this means that for some
embeddings, the debiasing direction (e.g. German-Turkish) does not match up with the bias
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measured in the WEAT (e.g. German-Italian). These values were still included in the results in
order to analyse whether the debiasing algorithms were perhaps able to mitigate even more than
just the narrow sense of origin they were instructed on. For better comprehensibility, Table 10
highlights in light green those WEAT experiments and debiased embeddings where the treated
nationality is the same.

Hard Debiasing with fastText Embeddings In the fastText embeddings, a significant bias was
only measured for Turkish names, as mentioned above. In the German-Turkish WEAT experiments
on the fastText embeddings after Hard Debiasing, the effect size was reduced by a magnitude
of 0.2239 and the p-value increased by 0.0464 points. This resulted in a p-value comfortably
above the significance level of 0.016̄, meaning that no significant bias could be measured after
debiasing.

Since no statistically significant bias for fastText embeddings was measured in the Polish or Italian
WEAT experiments before debiasing, I ran the Hard Debiasing algorithm for these cases mainly
in order to provide complete results. Interestingly, it can still be noted that effect sizes further
decreased and p-values further increased after debiasing.

Hard Debiasing with GloVe Embeddings Analysing the WEAT scores for the GloVe embed-
dings, which initially all showed statistically significant bias, it can be observed that Hard Debiasing
was only partly able to mitigate this bias. For the Turkish and Polish case, the algorithm reduced
the effect sizes by 0.3101 and 0.4111 points respectively. The p-value was approximately 0.001
and 0.0032 points higher after debiasing. Both of those values are still below the significance
level of 0.016̄.

For Italian origin bias, however, the algorithm significantly reduced the bias measured by the
WEAT. The effect size was reduced by a magnitude of 0.6244 and the p-value was increased
from 0.004 to 0.0538, which exceeds the specified significance level. Still, however, this debiased
version of the GloVe embeddings performs worse in the WEAT than the original version of the
fastText embeddings, which has a p-value approximately twice as high. Notably, the Italian WEAT
experiment was also the one with the lowest origin bias measured in the original GloVe embeddings
in comparison to the Turkish or Polish test.
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Hard Debiasing Across Nationalities In terms of cross-national Hard Debiasing, no success
could be reported. Debiasing with German-Polish or German-Italian seed words did not have
a consistent effect on German-Turkish bias. The effect size and p-value variably either slightly
increased or decreased, and no significant reduction in bias was achieved. None the GloVe biases
could be significantly mitigated by debiasing for a different nationality than the one measured for
by the WEAT. However, debiasing with Turkish seed words slightly improved Polish and Italian
bias, the Italian bias even considerably more so than Turkish bias.

Dictionary Debiasing Finally turning to the results of my Dictionary Debiasing approach, it
becomes apparent that while Hard Debiasing might not have fully satisfied my goal of removing
origin bias, Dictionary Debiasing fully failed in doing so. For all WEAT runs and all DD-GloVe
embeddings, the p-values are 0.0001 or lower and the lowest effect size is still very large at a
magnitude of 1.3057. The debiasing training process evidently had almost no noticeable effect
on the WEAT’s p-values. The effect sizes marginally decreased for the nationality for which the
embeddings were trained, but only by magnitudes of 0.0112 to 0.1734 points. While An et al.
(2022) claim that DD-GloVe has the capability to remove “general biases”, the model in some
cases even increased the bias measured by the WEAT, such as when training the German-Turkish
model and then evaluating for German-Italian bias. I investigate this behaviour more closely in
the next section.

4.3 Additional Attempts at Reproducing DD-GloVe

In response to the unexpectedly ineffective results of the DD-GloVe algorithm, I carried out further
experiments with the aim of determining the error source. Since DD-GloVe is a novel approach,
an additional goal is to critically review the work by An et al. (2022), which unlike for Bolukbasi
et al. (2016) has not been done so far.

Testing Assumption of Bias-Free Dictionaries

Since the semantic evaluation of the DD-GloVe embeddings did not produce considerably worse
results than for the pre-trained GloVe embeddings by Deepset, I assume that the basic GloVe
training is not an issue. Instead, it is likely that the model’s loss functions do not operate as
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Word Set Contents of Word Set
“German” Occupations Brenner, Verkoster, Anlagenführer, Orientalist, Altphilologe,

Fotograf, Kameramann, Richter, Verfassungsrichter, Tierarzt,
Führungskraft, Aufseher, Projektleiter, Politiker, Schornstein-
feger, Bestatter, Sozialarbeiter, Orthopäde, Lobbyist, Stenotyp-
ist

“Foreigner” Occupations Tänzer, Koch, Dachdecker, Trockenbaumonteur, Bauarbeiter,
Fleischer, Bäcker, Kellner, Betonbauer, Sänger, Fischwirt,
Musiker, Fliesenleger, Barkeeper, Metallograf, Bodenleger,
Gebäudereinigung, Putzkraft, Reinigungskraft, Stuckateur

Origin-Characterising Words ausland, ausländ, migrant, exot, pol, italien,
türk, fremd, einwander, zuwander, gast, deutsch,
inland, inländ, german, bundesrepublik, tradition,
heimat, ddr, brd, osteurop, österreich, schweiz,
asia, südeurop, asie, immigrant, flüchtling,
geflüchtet

Table 11: Collection of word sets aggregated for verifying the origin bias content of German
dictionaries. Contains stereotypical German and Non-German occupations as determined
by employment statistics. Origin-characterising words are such words which might appear
in a term’s dictionary definition and indicate that this term is related to the concept of
origin in some way.

intended or that the training data is not suitable for the task at hand. One of the basic assumptions
the DD-GloVe loss functions all make use of is that dictionary data can serve as a relatively
bias-free external training source. An et al. (2022) carried out an experiment testing whether this
assumption is true. I replicated this test for German origin bias.

To do so, An et al. (2022) derived a list of gender-biased occupations, i.e., occupations that are
stereotypically associated with one gender, from Zhao et al. (2018b). For each of these terms, they
examined whether the term’s dictionary definition contained any gendered words such as “he”,
“women” or “female”. They utilised a list of 1,441 gendered words first compiled by Wang et al.
(2020). The authors found that 39 out of 40 dictionary definitions for gender-biased occupations
did not contain gendered words. Based on this, they concluded that dictionary definitions are
“almost bias-free”1.

I replicated this test by first compiling a list of German origin-biased occupations. I based this
list on a statistic2 first published by the German employment office (“Agentur für Arbeit”) which

1 according to a somewhat narrow definition of “bias-free dictionaries”, as discussed in §3.3.2
2 https://mediendienst-integration.de/integration/arbeitsmarkt.html
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breaks down the citizenship of employees in all recorded occupations. In line with Zhao et al.
(2018b), I extracted the top 20 occupations with the largest proportion of German employees
and the top 20 with the largest non-German citizenship proportion. The resulting list can be
found in Table 11. This data can only serve as an approximated of origin-biased occupations
since occupations with a large proportion of non-German employees are not necessarily the same
as those which are socially seen as the most stereotypical occupations for foreigners. However,
no reliable data on the most stereotypical occupations for different nationalities is currently
available.

The equivalent to the list of gendered words necessary for this test I created manually by defining a
list of 30 word stems which could appear in the definition of an origin-related term, e.g., ausland,
heimat, immigrant, or türk. I name this list origin-characterising words. The full list can also
be found in Table 11. With these lists I then inspected how often origin-characterising words
appear in dictionary definitions for statistically “German” versus “non-German” occupation. The
result of this test was that in zero out of 40 occupation definitions, an origin-characterising word
appears, confirming An et al.’s findings.

In a second part of this test, the authors confirmed that gender-specific words, i.e., words which
should relate to gender such as “queen”, do contain gendered words in their definitions. To
replicate this test, I utilised the list of origin-specific words I created for the Hard Debiasing
algorithm (see §3.3.1) and checked for the presence of origin-characterising words in the dictionary
definitions of the origin-specific words. My results were that only 69 out of the 105 words
considered contained origin-characterising words, which constitutes 65.71%. This is a lower
percentage than the 86.25% (327 out of 379) reported by An et al. (2022). This likely either
means that German dictionary entries do not indicate their relation to origin topics as clearly as is
the case for English dictionaries and gender, or that my origin-characterising word list was not
extensive enough.

Reproducing Results for English and Gender

In order to investigate whether the unsuccessful results of my DD-GloVe debiasing were due to
changes I made while adapting the method to German origin bias or whether there are flaws
inherent to the method itself, I attempted to reproduce the results published in An et al. (2022).
This means that in this case, I utilised English instead of German data and examined gender
instead of origin. The steps necessary to achieve a reproduction are to ensure that the training
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code is identical to the code published by the authors, that hyperparameters match those specified
in their paper, and that the same data is used.

Investigating Dictionary Source Not only the training data itself, but also the dictionary data
used is essential for DD-GloVe training. However, it does not become entirely clear in An et al.
(2022) which dictionary the authors use.

In their paper’s text, they claim to derive definitions from the “Oxford online dictionary” and
link to https://www.lexico.com/, which in fact used to host a collection of Oxford dictionary
sources3, but now redirects the user to https://www.dictionary.com/ instead. Assuming
that the authors accessed the site before the redirection, which took place in August 20224,
they would have been using a combination of the Oxford Dictionary of English, the New Oxford
American Dictionary, and parts of the Oxford English Dictionary.5 However, comparing example
definitions given in An et al. (2022) to definitions from those sources does not yield matching
results.

Examining then the code published by An et al. (2022) leads one to the dictionary API resource “Free
Dictionary API”6. Upon searching the GitHub repository for the project, one can find a comment7

by the project’s creator dated August 2021 stating that the API’s data source will be migrated to
Wiktionary. It is unclear what the data source was before this date.

The definitions provided by the English version of Wiktionary are relatively similar to the example
definitions shown in An et al. (2022), but still do not match up exactly. For example, the
Wiktionary definition for “mistress” reads “A woman, specifically one with great control, authority
or ownership”8, while An et al. (2022) claim that a mistress is defined as “[a] woman in a
position of authority or control”. It is conceivable that the Wiktionary article was edited in
between the point in time at which An et al. (2022) accessed it and the time of writing this
thesis. It is also possible that An et al. (2022) carried out their experiments before August 2021.
Ultimately, it cannot be determined with certainty which dictionary the authors used in their
experiments.

3 https://web.archive.org/web/20190616173800/https://languages.oup.com/lexico-faqs
4 https://web.archive.org/web/20220813074549/https://www.lexico.com/
5 https://web.archive.org/web/20140122061925/http://www.oxforddictionaries.com/words/

content-help
6 https://dictionaryapi.dev/
7 https://github.com/meetDeveloper/freeDictionaryAPI/issues/102
8 https://en.wiktionary.org/wiki/mistress
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Training Setup For my reproduction, I decided to use the dictionary source specified in An
et al. (2022), the website dictionary.com. This is likely not the resource An et al. (2022) used,
since the website now houses content from the Random House Unabridged Dictionary, but unlike
the Oxford English Dictionary, it is a freely accessible dictionary website. While the results might
then not be identical to those published in An et al. (2022), the process should still be similar
enough to determine whether the method is reproducible at all. I crawled dictionary.com for
definitions of all tokens in the model’s vocabulary and retrieved definitions for 116,380 out of
400,000 tokens. If a word had multiple definitions, I simply concatenated all definitions, as An
et al. (2022) did.

For the model’s training corpus, I used a Wikipedia dump from HuggingFace9, in accordance with
An et al. (2022). The data set I downloaded is dated 2022-03-01. It is possible that An et al.
(2022) used an earlier version of Wikipedia.

The training code was taken directly from the authors’ GitHub page10. Most training parameters
stayed the same as in my German experiments except that the hyperparameter γ was set to 0.2
instead of 0.05, the number of seed words generated was n = 30, and seed words were generated
only in the first iteration. These settings were taken from the specifications for gender debiasing
in An et al. (2022). Lastly, as initial seed words I chose the default “he” and “she” which An
et al. (2022) used.

Reproduction Evaluation I compared scores for word pair similarity and the WEAT between
the vectors produced through my reproduction and the values published in An et al. (2022).
Additionally, I ran my evaluation on the vectors that An et al. (2022) have published on their
GitHub repository.

Unlike in my experiments for German embeddings, I used the WordSim-353 data set (Finkelstein
et al., 2001) for the word pair similarity task. Word pairs with out-of-vocabulary words were
treated as having zero similarity. For the WEAT I use the original WEAT 6 values from Caliskan
et al. (2017). This test consists of female versus male names as the attribute words, and career
versus family terms as the target words.

Table 12 compares the values An et al. (2022) reported after debiasing for gender bias, the vectors
the authors published on GitHub, and the embeddings I recreated.

9 https://huggingface.co/datasets/wikipedia
10 https://github.com/haozhe-an/DD-GloVe
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Paper GitHub Reproduced
WordSim-353 n/a ρ = 0.5718, p < 10−4 ρ = 0.6136, p < 10−4

WEAT 6 d = 1.25, p = 0.0029 d = 1.2941, p = 0.0004 d = 1.882, p < 10−4

Table 12: Comparison of semantic similarity and bias metrics between different version of
DD-GloVe embeddings. Embeddings from An et al. (2022) are compared with the vectors
the authors have published and my reproduction of their methods. For WordSim-353,
Spearman’s rank correlation coefficient ρ is specified and for the WEAT permutation test,
p-value and Cohen’s d are given.

Overall, it can be seen that the results are incongruous. The gender bias measured with the
WEAT was much higher in my version of the embeddings than what was reported by An et al.
(2022). According to the authors, the p-value of 0.0029 that DD-GloVe achieves on the WEAT
for gender bias is the best result out of a range of other debiasing methods such as Double Hard
Debias (Wang et al., 2020) and GN-GloVe (Zhao et al., 2018a). In my version of the embeddings,
however, the gender bias contained in them was as prevalent as if I had not been utilising the
debiasing loss functions at all. For comparison, I also trained a DD-GloVe model on English data
without any debiasing and ran the WEAT, resulting in a p-value of p < 10−4 and an effect size of
d = 1.831, which is as high as for the “debiased” version I trained.

The vectors published by the authors on GitHub achieved a WEAT score similar but not identical
to what is reported in An et al. (2022). It is possible that the published embeddings were trained
using slightly different parameters than those for which An et al. (2022) reported results in their
paper, and therefore produced different results. Nevertheless, one would expect the published
vectors to score closer to the published values.

The authors did not measure their embeddings’ performance for any word pair similarity task,
so only my reproduction and the published vectors could be compared. It can be seen that the
embeddings I trained show a slightly higher correlation for the WordSim-353 data set. This might be
due to me possibly using a newer Wikipedia dump than An et al. (2022). However, it is not certain
whether this factor alone would cause a difference of 0.0418 points.

Examining Seed Word Generation

An integral part of most debiasing algorithms is determining the bias direction with the help of
seeds words. In DD-GloVe, these seed words are automatically generated from a pair of initial
seed words. If this generation were unsuccessful, this would make it impossible for the algorithm
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to succeed in debiasing embeddings. Because of this, I analysed the seed words generated by
DD-GloVe under different training setups.

There are multiple parameters which influence the generated seed words. One such parameter
is the number n of seed words generated, which An et al. (2022) set to 30 for their gender
experiments, and for which I chose n = 10 for origin debiasing. Furthermore, the content of the
seed words’ definitions is a deciding factor. An et al. (2022) manipulate this in their code by cutting
off the definitional text for “he” after the first 11 words and thereby including only the dominant
dictionary gloss. Last but not least, the choice of the initial seed word pair of course heavily
influences the outcome of the seed word generation algorithm.

I experimented with different combinations of these parameters and qualitatively assessed the result-
ing seed words. In Table 13, I present an excerpt of these experiments. All training settings were the
same as for my usual DD-GloVe training unless otherwise specified.

Generally, it became apparent that many of the generated results were entirely unrelated to
the concept that the initial seed words expressed. This was especially the case for the seed
words “Türke” and “Ausländer”: Evaluating the main training setup I used throughout this
thesis (first row in Table 13), it can be seen that the seed words generated for “Türke” were
all unrelated to Türkiye or any other origin concept. The only exception was the seed word
“Türke” itself, which was added to the list automatically since it was the initial seed word. For
“Deutscher”, the rough orientation of the generated seeds were more in line with the desired
concept, although some terms (e.g., “Rotwelsch”, “Holländisch”) appeared far-fetched or even
unfitting considering that more obvious choices like “Deutschland” or “deutschstämmig” would
have been available.

Using only the first gloss (second row in Table 13) did — at least in this case — not improve
the quality of the results. The relatedness of the generated seed words to the origin concept was
similar to before.

Changing the initial seed words to “Deutscher” and “Ausländer” produced the most relevant
seed words. The seed words for “Deutscher” were all clearly related to the concept of being
German and while the seeds generated for “Ausländer” might not necessarily all have been
related to the concept of being a “foreigner”, they at least were all clearly related to the origin
concept.

Increasing the number of generated seed words lead to worse results. One might wonder why the
previous top ten terms were not included in these top 30 terms. This is because the seed word
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Setting Seed Words

<deutscher, türke> “Türke”: Ziehharmonika, Nachbau, Blutzucker, Konstrukt,
Türke, Versteifung, Paradoxie, Provisorisch
“Deutscher”: Biedermeier, Hitlerdeutschland, Bundesbank,
Deutscher, Germania, Hochdeutsche, Holländische, Schweiz-
erdeutsche, Rotwelsch, Lufthansa

<deutscher, türke>,
only first gloss

“Türke”: Bienenstock, Informationsveranstaltung, Wand-
schmuck, Absperrgitter, Türke, Selbstinszenierung, Orien-
tierungshilfe, Wärmedämmung, Herrschaftsinstrument, Funk-
tionär
“Deutscher”: Nationalsozialismus, Volksherrschaft, Lan-
desversicherungsanstalt, Tamile, Deutschtum, deutsch-
französisch, Deutsche, Deutscher, Bundesbank, Hochdeutsche

<deutscher, ausländer> “Ausländer”: Vokabel, Lehnwort, Fremdwort, Inländer,
Staatswappen, Dolmetscher, Ausländer, fremdländisch, Staats-
finanzen, Staatsschutz
“Deutscher”: deutschnational, Großdeutschland, Deutsch-
landtour, Deutschtum, deutsch-französisch, Hitlerdeutschland,
Deutsche, Deutschrock, Deutscher, Sudetendeutsche

<deutscher, ausländer>,
n = 30

“Ausländer”: Mondsonde, Schießer, Harfner, Mundschenk,
Sterbekasse, Datenschützer, Minima, Adoptivsohn, Inländer,
Ger, Dragqueen, Thermostat, Guano, Raumkapsel, Ausländer,
Junggeselle, Fremdarbeiter, Staatsbürger, [...]
“Deutscher”: Deutschtum, deutschstämmig, deutsch-
französisch, Achtundvierziger, Westmark, Deutschkunde,
Schwabenspiegel, Deutschlandlied, Novemberrevolution, Lan-
desversicherungsanstalt, Deutschsprachig, Hitlerdeutschland,
Deutschlandweit, Nachkriegsdeutschland, Biedermeier, Ost-
preußen, Gesamtdeutschland, Deutsch, [...]

An et al. (2022) Reproduction “he”: he, he/she, H.E
“she”: she, she/he, she/her

An et al. (2022) “he”: he, son, brother, brothers, boys, sons, boy, businessman,
yang, gentleman, wizard, headmaster, statesman, nobleman,
policeman, salesman, bahadur, stallion, fiance, manny, [...]
“she”: ex-wife, girl, jane, woman, wife, witch, women, she,
pilipinas, heroine, maids, hens, dona, wives, fiancee, goddess,
bint, sheila, hostess, hen, [...]

Table 13: Seed words generated by the DD-GloVe algorithm for different training setups.
Parameters are the initial seed words, number of seed words generated, dictionary content
used (entire entry or only the dominant gloss), and basic training scenario (English gender
or German origin). Additionally, the seed words reported by An et al. (2022) are shown.
Seed words in each row except the last are ordered according to the calculated bias value
b(w). For experiments with 30 generated seed words, only the first 20 are shown due to
lack of space.
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generation happens at train time and the seed words determined in the first iteration can change
in later iterations — depending on which seed words were chosen initially. In other words, in
each training iteration, the seed word sets influence the embeddings, which changes the definition
embeddings, and in turn this changes the seed words selected in the next iteration. Therefore, if
20 new seed words are introduced in the first iteration, this can lead to an output of 30 completely
different seed words in the last iteration.

My reproduction of An et al. (2022), i.e., gender debiasing for English embeddings as described
above, resulted in only six seed words total being identified. A lower number of seed words
being found than originally specified is possible whenever the algorithm determines multiple words
to have the same bias value b(w) (see §3.3.2). Due to the particular way An et al. (2022)
implemented their algorithm, only the top n values bigger than other values are included. If,
for example, the five highest “gender values” were [0.8, 0.8, 0.85, 0.9, 0.95], then for n = 5 only
[0.85, 0.9, 0.95] would be included since the first two values are the same. This suggests that
the three terms found for “he” and “she” were particularly high in their genderedness, but the
next-highest values were all too similar to each other, perhaps all zero. During the course of
carrying out these seed word experiments, I was able to note that in many cases, the vast majority
of bias values calculated was zero or close to zero.

It can further be seen that the seed words generated by my reproduction attempt greatly diverged
from those specified in An et al. (2022). Because dictionary definitions are a core part of the seed
word generation algorithm, the difference in the dictionaries used could potentially explain this
stark difference.

Seed Pair WEAT Turkish WEAT Polish WEAT Italian
↓ d ↑ p ↓ d ↑ p ↓ d ↑ p

<deutscher, türke> 1.821 < 10−4 1.658 < 10−4 1.452 < 10−4

<deutscher, pole> 1.772 < 10−4 1.557 < 10−4 1.330 < 10−4

<deutscher, italiener> 1.789 < 10−4 1.701 < 10−4 1.306 0.0001
<deutscher, ausländer> 1.790 < 10−4 1.716 0.0008 1.442 0.0008

Table 14: WEAT Scores for embedding bias comparison across different nationality pairs.
Each row represents a seed word pair, and columns show the effect size (Cohen’s d) and
statistical significance (p-value) for WEAT using Turkish, Polish, and Italian first names
as attributes. Lower effect size and higher p-values indicate improved performance in
mitigating bias.

Since the seed pair <deutscher, ausländer> produced the most promising results, I again per-
form a WEAT evaluation for the embeddings resulting from these seed words. Table 14 shows that
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while the seed words generated with the initial pair <deutscher, ausländer> may have seemed
more coherent than those for <deutscher, türke>, this did not necessarily reflect in better
debiasing results. For the WEAT with Turkish names, the performance of both embeddings was
approximately the same. For the Polish and Italian WEAT, the <deutscher, ausländer> embed-
dings achieved slightly better results than <deutscher, pole> and <deutscher, italiener>
respectively. The p-value was at least 0.0008 points higher in both cases. However, this still
resulted in p-values below the significance level of 1.6̄%.
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5 Discussion

In this chapter, I am going to discuss the results presented in chapter 4 and answer the three research
questions posed in chapter 1. In particular, I am going to focus on challenges encountered in my ex-
periments, unexpected results, and the implications of my findings.

5.1 How Do You Measure a Measure?

The first of my leading research questions was how origin bias can be measured in German word
embeddings. I chose to employ the WEAT as the bias metric of this thesis. Kurpicz-Briki (2020)
had already shown that the seed words used in English WEAT experiments can be translated
and applied to German embeddings and I was able to confirm these findings. This result was
as expected since the basic methodology of the WEAT — calculating word associations based
on similarity — also works for German embeddings since apart form training data, there is no
significant difference between the training process of GloVe and fastText embeddings for English
versus for German. It follows that the basic properties of the embeddings are the same and
calculations like cosine similarity transcend the embedding language. I therefore find that the
WEAT could theoretically applied to any scenario in which two distinct groups of attribute and
target words can be defined.

Apart from the WEAT, I also presented other options for measuring bias in §2.3 like the neigh-
bourhood metric or word analogy tests. It is difficult to determine whether the WEAT is an
appropriate tool to measure origin bias or not. In order to do so, one would need a gold measure
to compare this metric to, i.e., a metric for which it could be said with certainty that it accurately
quantifies the bias contained in word embeddings. However, no such gold measure exists, since all
presented bias metrics already are attempts at creating a measure of bias. In other words, no
ground truth exists for the question of “How biased is an embedding?”, only different theoretical
approaches. This leads to the question of how best to determine how well a metric captures
embedding bias.

Bolukbasi et al. (2016) in this regard state that “the difficulty of evaluating embedding quality
[...] parallels the difficulty of defining bias in an embedding”, meaning that both measuring
the semantic performance of embeddings as well as measuring embedding bias are challenging
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tasks. One possible method to resolve this could be to compare the results produced by a human
study to those measured with embeddings. Since Caliskan et al. (2017) based the WEAT on
the psychological IAT, this was one of the arguments I presented for selecting the WEAT as a
metric. Still, a direct comparison of embedding bias to human bias is not possible since humans
cannot judge the content of 300-dimensional vectors. Only a validation via a proxy is possible,
e.g., by employing methods such as calculating the associations between word embeddings and
then having humans rate these words in combination as well.

Another approach to appraising different bias metrics could be to assess the strengths and
weaknesses of a metric in comparison to other metrics, which I have done in §2.3. One of the
main issues researchers have pointed out for the WEAT is its dependency on token frequency.
Van Loon et al. (2022) criticised that the bias measured with the WEAT can be explained solely
by rare and negative terms being clustered together in the embedding space. Their research
was placed in the context of sociology, where embeddings are used as predictors of anti-Black
sentiment. In this context, their criticisms are valid, since the frequency dependency means that
embeddings can not be used as an independent indicator of anti-Black sentiment. However, I
would argue that the issue they criticised lies with the embeddings themselves and not the metric.
Calculating cosine scores, which is how the WEAT measures association, is an integral part of
many downstream NLP applications which do not “control for relative name frequency”, as van
Loon et al. (2022) suggest. If biased outputs are produced by these applications, they are still
problematic even if they can be explained by frequency. Therefore, measuring this “frequency
bias” can be a valuable part of the process of measuring bias in word embeddings. This view then
rewards debiasing methods such as Double-Hard Debiasing (Wang et al., 2020) which remove
frequency information from the embeddings.

As explained in chapter 2, the step of determining a bias metric should not be equated with
defining what bias fundamentally is. As part of my research questions, I made the assumption
that bias can be captured using mathematical methods. To discuss this, it could be explored
whether the WEAT can be said to detect embeddings which fulfill the initial definitions of bias
proposed in chapter 1.

I assess that especially the second definition by Friedman and Nissenbaum (1996) is well-addressed
by the WEAT. This definition asks whether computer systems “systematically and unfairly
discriminate” against certain people. The WEAT shows that, e.g., Turkish names are more
associated with unpleasant terms and German names are more associated with pleasant terms.
This could lead to discriminatory behaviour of downstream applications in which these embeddings
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are utilised. The WEAT measures this discrepancy in a systematic way with a permutation test
over lists of dozens of seed words.

The first bias definition by the Brookings Institution (2023) asks whether algorithms are predicting
their target inaccurately or inequitably. This would probably best be measured by a method which
generates predictions from language models or which employs embeddings in downstream tasks
for which the performance can be measured. However, accurate predictions can in part also be
measured with the semantic evaluation I carried out and which showed slight improvements in
performance after debiasing. This indicates that perhaps the bias contained in the embeddings
did indeed hinder accurate predictions. The equity of predictions is again captured by the WEAT,
since I used the WEAT to compare predictions of similarity between two nationalities and found
them, at least in part, to not be equal.

Considering the factors discussed here, I estimate the WEAT to be an appropriate tool to measure
origin bias in German word embeddings. Nevertheless, employing additional metrics, especially
ones which examine indirect bias, could provide an even more accurate insight into origin bias in
German embeddings. Future work should thus ideally include a comparison of a broad selection of
bias metrics.

5.2 Seed Lists Introduce Subjectivity

Antoniak and Mimno (2021) stated that seed words, which are used in most bias-related methods,
often pose problems due to instability. I have encountered this issue in various parts of my own
research. In particular, I can confirm Antoniak and Mimno’s observations that results of bias
analysis and debiasing methods heavily depend on the choices made regarding the selection of
seed words.

For my WEAT measurements, I defined a process for creating new attribute sets, which I am going
to reflect upon in §5.3. The name lists resulting from these changes produced measurements
different from those reported by Kurpicz-Briki (2020). As discussed above, it is difficult to
determine which of these WEAT variants “better” captures bias. It is clear, however, that the
differences in output are due to the different seed words chosen. The selection of these seed words
posed multiple challenges.
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For the primary step of gathering name data, no official records were available for Germany. For
the other three countries, official records were sometimes inaccessible due to language barriers, or
sources contradicted each other. Other researchers have occasionally used medical data such as
cancer registries in which names and ethnic origin of patients are documented (e.g., Razum et al.,
2001). However, this type of data is classified as sensitive information and therefore not easily
accessible. I therefore utilised privately operated websites which aggregate name information. It
could be questioned whether the names extracted from these sources truly represent the most
common names of each country. I attempted to mitigate this potential issue by including name
prevalence, frequency and nationality uniqueness in my filter criteria.

The details of my filter criteria were chosen with efficiency, reproducibilty, and stability in mind.
However, there are some limitations to my methodology. The thresholds for some of the criteria,
e.g., gender distribution, was chosen empirically based on the number and type of names included
at different thresholds. Furthermore, it was assumed that if a name is used predominantly as, e.g.,
German in German texts, it is a typically German name, even though it might be that it is just used
this way in German texts, not in general. Lastly, the process of excluding names with ambiguous
origin could potentially have resulted in an age bias in the names since there could be differences
in the typical origin of names between different generations.

Since there is no benchmark for correct choices in this case, the validity of my selection procedure
can ultimately only be assured in the sense that more comprehensive attribute lists should, in
theory, lead to more reliable results. This holds true as long as the names of the list are fitting
for the origin categories, which I ensured with the inclusion criteria I specified. In any case, my
adapted WEAT attribute lists present a more extensive, methodically selected, and differentiated
version of the name lists first presented in Caliskan et al. (2017) and translated by Kurpicz-Briki
(2020).

Both debiasing algorithms I examined were influenced by the seed words chosen for them. For
DD-GloVe, I chose only two initial seed words and the model automatically generated additional
seed words. While this might seem like a solution to the subjective nature of seed word choices,
in practice, this method only lead to a higher influence of the initial two seed words chosen and
less possibilities to adapt the algorithm to specific circumstances, as can be seen in the analysis in
§4.3.

Especially for the Hard Debiasing algorithm, I defined many seed words through a process of
qualitative evaluation. The seed words in this case are the primary factor in determining which
information is to be removed from the embeddings. Since the semantic performance was not
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decreased after debiasing, it is unlikely that the word lists I created were too extensive. However,
it is possible that they were not extensive enough or contained unsuitable words, and that this
decreased the debiasing performance. This could explain why the algorithm was able to remove
some of the measured biases but not others.

Overall, there is a great level of subjectivity involved in the creation of seed lists. There exist barely
any recognized and extensively reviewed standard data sets, and virtually none at all for cases
other than English gender bias. Seed sets are a decisive factor in the success of debiasing methods;
the failure of the DD-GloVe algorithm in this thesis is a striking example of this. It would therefore
be a worthwhile endeavour for future work to critically review and rethink existing word lists and
compare the outcome of debiasing algorithms using different seeds.

5.3 Characteristics of Origin Bias in German Embeddings

Origin Bias Differs Between Nationalities The second research question I posed in chapter
1 was whether German word embeddings contain origin bias. I expected to confirm the findings
of Kurpicz-Briki (2020), who found origin bias in German embeddings similar to what has been
observed for English embeddings using the WEAT. Overall, I was able to show that German
fastText as well as GloVe embeddings do contain origin bias. However, my results in this regard
were mixed and a significant bias was not measured in all examined cases. This is surprising
because prior literature has been unanimous in its discovery of gender and racial bias in English
embeddings.

This contrast is likely due to the adapted WEAT seeds I employed, which differentiate between
different nationalities. Kurpicz-Briki (2020) in her experiments created name lists which, by
happenstance, mainly included names of Turkish or Arabic origin (see Table 1 in §3.2.2). The
bias I measured with the WEAT for my Turkish name lists was indeed comparable to the values
published by Kurpicz-Briki (2020); it is only for the Polish and Italian experiments that my values
differed considerably. It can therefore be assumed that, if the nationalities in the data set used by
Kurpicz-Briki (2020) were more diverse, the bias measured by the author would also be lower or
even non-significant. A similar hypothesis can be raised for works on English embeddings which
measured racial bias on a Black-White axis. It is possible that, if racial bias in English embeddings
were differentiated between, e.g., White, Black, Hispanic, and Asian groups, the results might
differ to previously reported biases too.
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This raises the question of what is preferable — the analysis of general origin bias or examining
different individual ethnic origins? According to the research motivation presented in chapter §1, the
aim of bias research can be understood as raising awareness of biased patterns in word embeddings
and mitigating the discriminatory effect these patterns can have in downstream applications. With
these goals in mind, a more differentiated view of bias with specific nationalities or races can
provide more thorough information to users of embeddings. This additional knowledge could then
potentially lead to the development of more specialised debiasing methods, which more effectively
reduce origin bias from embeddings. I therefore encourage future bias research to further explore
multi-dimensional bias analysis and bias mitigation methods.

One insight the differentiation between nationalities allows is a comparison of the WEAT values
with the discrimination these minorities experience in real-world scenarios. In a survey by the
research team Deutsches Zentrum für Integrations- und Migrationsforschung, the authors reported
that people of Turkish origin experienced discrimination more often than other groups (Brinkmann
et al., 2023). This matches the bias I measured in German word embeddings. In fastText
embeddings, Turkish names were the only ones for which a significant bias was measured, and in
GloVe embeddings, the Turkish bias was accompanied by the largest effect size. Furthermore,
Brinkmann et al. (2023) reported that people of Polish or South European origin experienced
discrimination considerably less often than people from other ethnic origins such as Africa or the
Middle East. Again, this agrees with my WEAT results, which indicated a lower bias for the
Polish and Italian tests. This is especially the case for the fastText embeddings, in which I was
not able to measure a statistically significant bias against people of Polish or Italian origin. In
light of these results and the statistics reported by Brinkmann et al. (2023), future work might
focus primarily on measuring and mitigating bias against African, Middle Eastern, and Turkish
descent.

Origin Bias Differs Between Embeddings Next to the differences between nationalities, my
adapted WEAT experiments results also included unexpected differences between fastText and
GloVe embeddings. While no statistically significant bias against Polish or Italian names could
be measured in fastText embeddings, the GloVe embeddings contained Polish and Italian biases
almost as high as for Turkish names. This raises the question of where this difference stems
from. The two sets of embeddings were both trained on similar Wikipedia data and evaluated
using the same WEAT attribute lists. Therefore, it is likely that the difference lies in the training
methodology of the two embeddings.
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One explanatory approach arises from comparing the effect sizes and p-values of the respective
tests. While the average p-value for the fastText embeddings (0.8910) is considerably above the
significance level and much higher than its GloVe equivalent (0.0013), the average effect size for
the fastText embeddings is still large with a magnitude of 0.8910. These values can be interpreted
as there being a large practical difference between the fastText embeddings for German versus
other names, but this difference not necessarily being a biased one, i.e., not being associated with
pleasant versus unpleasant terms in a statistically significant way. In practice, this might mean
that a difference between, e.g., Italian and German names exists in both embedding models, but
only GloVe optimises the embeddings in such a way that this difference expresses itself as Italian
names being more negative than German names.

A possible reason for such behaviour can be found in how the two models treat infrequent terms.
In §2.3, I presented research on how embedding models tend to group infrequent and negative
terms together and how this affect bias metrics. It is possible that GloVe embeddings exhibit this
behaviour more intensely than fastText embeddings, which are trained on subwords and therefore
able to handle rare words more accurately. If this is the case, the GloVe model might associate
Polish and Italian names with unpleasant terms because of their shared infrequency, but the
fastText model might be able to circumvent this association.

This hypothesis in turn leads to the question of why, then, the fastText embeddings contain
significant bias against Turkish origin. Frequency alone does not determine the embeddings that
a model produces. For Turkish origin, it might be the case that there are clear semantic data
patterns relating Turkish and negative terms to each other, such as texts about Turkish people
written in a negative tone of voice. According to the semantic content of the data, fastText would
then accurately learn a bias against people of Turkish origin.

In order to test this hypothesis, future work might analyse where in the corpus bias stems from
and compare this between fastText and GloVe embeddings. It could then be seen whether the
same corpus documents lead to different outcomes in terms of bias in the two models. Brunet
et al. (2019) developed a method which could be employed to this end. They analysed how
removing certain documents from the corpus affected bias in word embeddings. Furthermore,
in future work the WEAT could be carried out and compared between fastText and Word2Vec
embeddings, which are similar to fastText except that they are not trained on subwords. From
this, conclusions could be drawn about the effect that fastText’s special handling of rare words
has on origin bias.
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This explanatory approach does not explain all differences between the two models to full
satisfaction. In particular, it does not provide a reason as to why the effect size measured for
Polish bias in fastText embeddings was as low as it was. To reiterate, the training corpus used was
similar and the WEAT attribute lists were identical between GloVe and fastText. Because of this,
the discrepancy cannot stem from, e.g., German and Polish names perhaps being more similar
etymologically, or any other property of the data. Instead, the difference should also be explainable
by the different architectures of the two embeddings models. When counting the frequency of
names in the training corpus, I found that on average, the Polish WEAT names appeared 3081
times in the corpus whereas the Italian names appeared 9155 times on average. It is conceivable
that due to the lower number of Polish occurrences, the model used more subword information
for constructing the Polish name embeddings than was the case for the Italian name embeddings.
These subword embeddings might share features with the embeddings for the German name
embeddings, leading to a greater similarity between the two sets of name embeddings and hence
a smaller effect size. Again, Word2Vec embeddings could be evaluated to assess whether this
hypothesis has merit.

Finally, it should be noted that the, in part, low bias measured in fastText embeddings does not
necessarily mean that these embeddings are not biased against people of Polish or Italian origin.
The WEAT can only measure the presence of bias, not its absence, since it can only disprove the
null hypothesis of there not being any bias, not prove it. In future work, further bias metrics could
be applied to these embeddings to determine with more certainty whether they are truly free of
Polish and Italian bias.

5.4 Difficulties in Adapting Debiasing for German
Embeddings

The third research question I formulated was how origin bias in German embeddings can be
mitigated. My sub-questions under this were whether existing methods can be adapted to the
German origin scenario, how different methods compare to each other, and what reasons for the
success or failure of these methods might be.

As described in §2.4, a variety of approaches to debiasing exist. While many authors state that
their methods can be adapted to other languages or bias attributes, in practice, the adaptation of
such methods to German and origin bias was not without challenges. German is a resource-rich
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language, but nevertheless, data specific to bias research is scarcely available, so it became
necessary to create new data sets. During the process of creating seed words, own biases or
instability can be introduced to the data, as explained in §5.2.

Particularly for the Hard Debiasing algorithm, the creation of extensive seed word sets was
necessary. The resulting performance of Hard Debiasing might have been hindered by limitations
in my methodology in this regard. Since I did not carry out any human studies to confirm my
selected origin-defining word pairs, it is possible that they did not capture the concept of origin in
an ideal way.

Furthermore, the set o origin-specific words defined in this work was smaller in size than the
one used in Bolukbasi et al. (2016). However, this should, in theory, not have lead to worse
debiasing results, only possibly to a decrease in semantic performance. This is due to the fact
that the origin-specific seed words define the words not to be debiased and therefore a small set
size might mean that too many words were debiased. Since the semantic evaluation did not show
a decrease in performance after Hard Debiasing, it can be assumed that this was not a prevalent
issue.

Part of my initial research question was whether the employed methods are able to mitigate bias
according to the bias definitions given in chapter 1. In this thesis, the success of debiasing was
measured using the WEAT. As discussed in §5.1, the WEAT can capture bias according to the bias
definitions proposed in chapter 1. Therefore, if the bias contained in embeddings was mitigated
according to the WEAT, the methods were able to reduce bias so that the initial definitions of biased
computer systems were no longer fulfilled for these embeddings.

The results of my WEAT experiments showed that this was not the case for the DD-GloVe
algorithm. Possible reasons for this are going to be explored in §5.5. The Hard Debiasing
algorithm, on the other hand, was able to reduce the measured bias above the significance level
in two out of four cases where statistically significant bias was initially measured: In fastText
embeddings, Hard Debiasing reduced Turkish origin bias below statistical significance. Since this
was the only nationality for which bias was detected in the original embeddings, the algorithm
appears to be well-suited for fastText embeddings. In the GloVe embeddings, only Italian origin
bias was removed to a statistically significant degree, even though the WEAT also indicated
Turkish and Polish origin bias in the original embeddings.

One conceivable explanation of this result is that the German-Italian seed words used for debiasing
better expressed the origin concept than the German-Turkish or German-Polish seed words.
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However, this is unlikely because the same seed words were also used to successfully reduce Turkish
origin bias in the fastText embeddings. This suggests that the difference lies in how the bias is
structured, i.e., represented as features, in the embeddings. As described in §2.4, researchers have
criticised that Hard Debiasing is not able to remove indirect biases well (Gonen and Goldberg,
2019). It stands to reason that GloVe embeddings might contain more indirect bias for Turkish
and Polish origin than for Italian origin and the debiasing algorithm is therefore more successful in
removing Italian origin bias.

It should be noted that while the Hard Debiasing algorithm was not as successful for Turkish
and Polish origin bias as for the Italian case, the bias measured by the WEAT still was decreased
after debiasing. This becomes especially relevant when comparing the WEAT scores for these
results to values published in prior literature. According to baselines evaluated by An et al.
(2022), even methods for which researchers have reported debiasing success sometimes still
only produce p-values close to zero after debiasing. However, the values reported by An et al.
(2022) differ from those published in the original papers which An et al. (2022) reference. For
example, An et al. (2022) claim that Double-Hard Debiasing (Wang et al., 2020) results in a
p-value of 0.0014 on the WEAT 1 (which measures gender bias) whereas Wang et al. (2020)
themselves state that the algorithm achieves a p-value of 0.0366. In both cases, that value would
still be below the significance level α = 0.05 specified by the authors. In comparison to other
literature, it might therefore be reasonable not to assume failure of the method if the WEAT
still measures significant bias after debiasing, but instead to strive mainly for a general trend
towards mitigation. Under this assumption, Hard Debiasing can be said to overall have successfully
mitigated origin bias in German word embeddings, whereas the DD-GloVe algorithm failed in
doing so.

5.5 Insights from Failed DD-GloVe Reproduction

The experiments I carried out in response to the lack of success of the DD-GloVe method allow
some conclusions to be drawn as to why the model did not perform as reported by An et al.
(2022).

The fundamental assumption of dictionary-based debiasing methods such as DD-GloVe is that
dictionary definitions can be leveraged as neutral reference points. These reference points are then
supposed to indicate which words should or should not be related to the bias attribute. Due to
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this important role, the dictionary data used has a large impact on the resulting embeddings. As
noted in §3.3.2, the dictionary used in my experiments contained only approximately half as many
definitions as the one used by An et al. (2022). In my implementation for German embeddings
and origin bias, I retrieved definitions for 59,721 tokens, whereas in my reproduction of An et al.
(2022), the English dictionary yielded definitions for 116,380 tokens. Because of this, there was
less data available for the German DD-GloVe model to determine bias values for its vocbulary
tokens.

Moreover, the experiment described in §4.3 showed that even for words which should be related to
origin, the German dictionary definitions did not contain origin-characterising terms. This might
have prevented the DD-GloVe model from successfully differentiating which words should and
should not be related to the bias dimension: The algorithm assumes that definition embedding
can be used to determine whether a word’s embedding is biased or not. This assumption is
especially important for the bias-aware GloVe loss function JG−bias, which due to hyperparameter
settings was the primary influence on the overall loss. The function depends on the existence of a
significant number of definitions which indicate whether a token is related to origin. However, my
experiments showed that many dictionary definitions in fact did not contain information about the
token’s relation to origin. This might have led the algorithm to judge a large number of words to
be similarly biased — or rather, similarly unbiased. For most parts of the DD-GloVe algorithm, this
behaviour is not detrimental. Particularly the definition loss Jdef will still enhance the embeddings
with general information from the dictionary definitions, unrelated to origin bias. The effect of
this can be observed in the increased semantic performance of the embeddings after debiasing,
despite the bias not having been removed. In terms of origin-debiasing, however, missing dictionary
definitions and dictionary definitions which erroneously do not contain origin-characterising words
will lead to the model not being able to accurately identify biased embeddings. The debiasing
therefore cannot be successful.

My experiments further showed that the seed word generation algorithm employed by DD-GloVe did
not produce the desired results. The reason for this could again be related to the issue of dictionary
definitions not containing enough information about origin: In the seed word generation algorithm,
vocabulary tokens are sorted according to their bias value to identify the most origin-specific
tokens. This bias value is calculated using definition embeddings. It is assumed that a word related
to origin will contain origin words in its definition and therefore its projection onto the initial seed
words’ difference vector will have a large absolute value. Since the dictionary definitions, however,
are in large parts not just bias-free, but also generally origin-free, this assumption in practice was
not fulfilled. Furthermore, it is assumed that the difference between the two initial seed words
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chosen by the user clearly indicates the origin direction. It is possible that the initial seed words
selected by me were not indicative enough of the origin concept. The result of these two faulty
assumptions could then have been that arbitrary words were found by the algorithm because the
projection vector was not meaningfully connected to origin, and there were not enough words with
a large bias value.

Additional aspects which might have had a detrimental effect on the outcome of the seed word
generation algorithm are the calculations the algorithm performs. While An et al. (2022) state
that they calculated the bias value of a given token as the projection of the tokens’ vector
onto the difference vector between the initial seed words, this is not what is specified in their
code or mathematical expression. There, they defined the bias value as the difference between
the cosine similarities of the token to the two initial seed words. This is not equal to the
scalar projection they claim to use in their explanation of the algorithm. It is possible that
actually using vector projection instead of cosine similarity in practice might have lead to more
meaningful results, since this would have made the bias values more dependent on the difference
between the two initial seed words instead of just their individual associations with the token in
question.

Apart from these difficulties, there are also features inherent to the design of the DD-GloVe method
which could be called into question: An et al. (2022) chose to calculate definition embeddings
by averaging all embeddings in the definition embeddings. This method will include any content
present in the definition irrespective of whether it is relevant to the semantic meaning of the word.
In cases where there is an origin-characterising word present in the definition, but the definition
also contains many other words unrelated to origin, the origin content might not get across in the
average of all definitional embeddings. This is especially relevant since the authors also chose to
include all definitional glosses of a word into its definition and not just the most dominant one,
even though some words may be homonyms or otherwise ambiguous. A more suitable approach to
calculating the definition embeddings could be to apply a weighting function to the various glosses
of a word, or to calculate the definition embeddings with methods designed for calculating singular
vectors from multiple-word texts, such as document embeddings.

Finally, I attempted to reproduce the results published by An et al. (2022) by directly replicating
their experiments, but did not succeed in doing so. A primary possible reason for this is the
training data used. In §4.3, I detailed my procedure of selecting a dictionary for the reproduction
attempt. It is likely that the dictionary data used in my reproduction was not the same as that
used by An et al. (2022). In addition, it is possible that the authors used a different version of
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Wikipedia data than the one used in this thesis. There can also be some training parameters found
in the code published by An et al. (2022) which are not explained in their paper and for which it
is therefore uncertain how they should be set. This includes a cap c which restricts the choice
of seed words to the first c words in the vocabulary, and the restriction of the initial seed words’
dictionary definitions to the first gloss. All of these factors potentially influenced the reproduction
in this thesis and might have led to the difference in outcomes.

The failure of this reproduction demonstrates the importance of documentation of the precise
data and hyperparameters used in scientific works. The incongruence of the work by An et al.
(2022) and their training code make parts of any reproduction attempt a matter of best guesses.
On top of this, the results reported by An et al. (2022) for their reproductions of various other
debiasing methods were not consistent with the values reported in the corresponding original
works, as mentioned in §5.4. In particular, An et al. (2022) reported a p-value of 0.0029 for the
WEAT 1 experiment measuring gender bias after debiasing with DD-GloVe, and claimed that this
result is state-of-the-art compared to other methods. However, some of the works they compared
to their method in actuality report higher p-values than 0.0029.

Overall, these inconsistencies point towards the broader context of the reproducibility crisis
ongoing in NLP research. In a work reviewing current efforts to increase reproducibility in NLP and
machine learning research, Belz et al. (2021) found that only approximately 14% of reproduction
studies obtained the same results as the original study. They also reported that reproductions
usually yield worse results than what was claimed by the original works and that “worryingly
small differences in code have been found to result in big differences in performance”. The
results of my experiments concerning the DD-GloVe algorithm were in line with these concerning
findings.
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6 Conclusion

Researchers in recent years have shown that embeddings contain undesired content in regards to
protected attributes such as gender, which has real-world consequences when algorithms using such
embeddings output discriminatory judgements. Previous studies have made progress in assessing
and addressing such bias but have focused mainly on English embeddings and gender bias. In this
present study, my leading research questions were how origin bias in German word embeddings
can be measured, to what extent German embeddings are origin-biased, and how such bias can
be mitigated. In order to answer these questions, I defined a bias metric and adapted and applied
two debiasing algorithms on fastText and GloVe embeddings.

I employed the WEAT as a bias metric and found that it is generally well-adaptable to German
and fulfills the purpose of quantifying bias as I defined it. Expanding upon work by Kurpicz-Briki
(2020), I created new name seeds to measure bias relating to Turkish, Polish, and Italian origin.
This differentiation allowed a more fine-grained analysis, but was challenging in terms of gathering
reliable data and defining appropriate filter criteria.

An analysis of German embeddings with this metric partly confirmed the existence of origin bias as
previously found by other researchers, but partly also resulted in lower bias values than expected:
In fastText embeddings, no significant bias was measured for Turkish and Polish origin. GloVe
embeddings, on the other hand, showed significant bias for all three nationalities. The highest bias
in both sets of embeddings was measured for Turkish origin. Especially for the GloVe embeddings
analysed, the bias captured by the WEAT corresponded to experiences of discrimination made by
people with a migration background in Germany.

The performances of the debiasing algorithms were heterogeneous: The Hard Debiasing ap-
proach proposed by Bolukbasi et al. (2016) achieved somewhat successful bias mitigation,
whereas the DD-GloVe model propsed by An et al. (2022) did not produce improved re-
sults.

Hard Debiasing was able to raise p-values above the significance level for Turkish bias in fastText
embeddings and Italian bias in GloVe embeddings, and otherwise also reduced the measured bias,
but not to such a great extent that no statistically significant bias was measured afterwards.
Paralleling my WEAT adaption, a challenge in adapting this method for German embeddings and
origin bias was the creation of fitting seed lists, which necessarily introduce subjectivity into the
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process. The results of the algorithm might be improved by expanding and validating the seed
lists I created with a human study.

DD-GloVe achieved barely any reduction in bias across all experiments I carried out. Further
investigative experiments showed that the dictionary data needed for the method was likely not
suitable to the task of identifying origin-related versus origin-neutral words and therefore the model
was not able to learn which parts of the embeddings should be debiased. This along with other
discovered weaknesses such as debatable methods of calculating definition embeddings might have
led to the undesired outputs of the seed word generation algorithm of DD-GloVe. An attempted
reproduction of the experiments in An et al. (2022) under the same settings was not successful,
possibly due to differences in training data and hyperparameters.

The failure of my DD-GloVe reproduction demonstrates the importance of the reproducibility of
scientific studies. In addition to training code and hyperparameters used, authors in bias research
should also consistently specify the seed words used for their algorithms and the exact procedures
of how these seed words were procured. This is especially important to avoid various issues of
“bad seeds” as discovered by Antoniak and Mimno (2021).

Many works on bias mitigation claim that their methods should, in theory, be applicable to other
bias attributes and languages even when they carried out experiments only on English embeddings
and for gender bias. An et al. (2022) and Bolukbasi et al. (2016) are among such works. In view of
my results, these claims do not hold up. I therefore encourage future work to treat bias attributes
other than gender not just as a theoretical matter, but as a real issue with large potential societal
impact.

In this thesis, I first explored which kind of debiasing might be promising for origin bias in German
embeddings and where potential problems lie. I thereby was able to provide some guidance
for future work which might focus more extensively on optimizing debiasing performance. In
particular, my findings showed that dictionary-based methods are challenging to adapt for this
purpose and that the Hard Debiasing approach might be a promising avenue. Since frequency
plays a significant role in the measurement and mitigation of bias, the Double-Hard Debiasing
method (Wang et al., 2020), which accounts for frequency information in embeddings, might be
an interesting approach to consider.

Lastly, the partly disparate bias values I measured for different nationalities demonstrate that
it is important to consider exactly which bias attribute and dimensions researchers should anal-
yse and mitigate. Gender and race, for example, have been assumed as biased attributes,
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but might be too general categories. It would be worthwhile for future research to examine
more closely the motivations for debiasing and, if necessary, redefine bias categories accord-
ingly.

All together, the strides already made towards a fairer NLP world are commendable. However, in
the context of the rising influence of natural language technologies, researchers should not settle
for simple solutions to a complex problem. Bias is multi-faceted and should be measured from
multiple points of view; different kinds of bias must be treated differently; and the challenges of
languages other than English should not be neglected in bias research, since bias differs across
cultures and languages.
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