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Abstract

ABSINTH1 provides a novel graph based
approach to word sense induction for
Task 11 of SemEval-2013, combining
work from multiple fields of natural lan-
guage processing, most notably Hyperlex
(Véronis, 2004) and sentiment propaga-
tion (Hamilton et al., 2016).

1 Introduction

As late as twelve years after publication, the graph
based approach to word sense induction proposed
in Véronis (2004) is still cited as ’state-of-the-art’
(Tripodi and Pelillo 2016, Ustalov et al. 2017).
We build on the principles laid out in Hyperlex
(Véronis, 2004) with a more dynamic feature set,
as well as recent methods previously used mostly
for sentiment analysis and tasks unrelated to natu-
ral language processing.
Our system provides a simple yet efficient two-
step solution to SemEval-2013 Task 11 (Navigli
and Vannella, 2013). To achieve this we utilise
the properties of small world graphs for language
(Cancho and Solé, 2001) in general and semantic
relations (Newman, 2003) in particular. We ex-
tract senses using the root hub algorithm proposed
in Véronis (2004) with adjusted, flexible features
for corpora of varying sizes.
For word sense disambiguation we use the sense
inventory created in previous steps and a graph
propagation algorithm to assign each node a sense
distribution vector. Lastly, the vectors of each
word in a given context are summed up and the
context is assigned the sense of the best cumula-
tive weight.
In addition to the SemEval scoring methods to
evaluate our results we use Characteristic Path
Length and Global Clustering Coefficient to eval-
uate the properties of our cooccurrence graphs.
Our system results lie within the expected perfor-
mance set by the original task participants.

1Association Based Semantic Induction Tools from Hei-
delberg

PARAMETER OUR SYSTEM HYPERLEX BASELINE

MIN. CONTEXT 4 4 4
MIN. #NODES AVG. #NODES 10 9
MIN. #EDGES AVG. #EDGES 5 3
MAX. WEIGHT 0.9 0.9 0.9

Table 1: Minimum context size, minimum number of nodes,
minimum number of edges and maximum edge weight for
our system, Hyperlex and our Baseline.

2 Related Work

Graph based approaches to word sense induction
have been successfully used since the early 2000s
(Véronis 2004, Di Marco and Navigli 2013).
Véronis proposes the use of root hub detection
and minimum spanning trees (Kruskal, 1956) to
induce senses and disambiguate search results.
The usefulness of the properties of small world
graphs for sense disambiguation has been shown
previously in Newman (2003). The term ’Small
World’ was introduced by Travers and Milgram,
who used it to describe the connectedness of
acquaintance networks (Travers and Milgram,
1969). According to their findings, the aver-
age path length between two people living in the
United States lies around five or six, even though
they are selected from a relatively large number of
people. The properties of these small world graphs
have been formally described in Watts and Stro-
gatz (1998) and we will see later on that the graph
we are using is indeed a small world graph, as the
words are connected in a similar way.
Because of this property, nodes with a high degree
(number of outgoing edges) can be selected as so
called ’root hubs’. It is assumed, that words be-
longing to a sense are clustered around these root
hubs and meaning can be induced by mapping a
vocabulary to them.
Véronis uses paragraphs including the target string
from a web corpus as contexts for building cooc-
currence graphs, with two words occurring within
a context being an edge. Paragraphs with fewer
than 4 words are discarded, further limits on
nodes, edges and their weights are introduced (See
table 1). The target string is not included in the



graph.
Higher associated edges are assigned lower
weights using a weighting system explained later
on. Why this weighting algorithm is chosen over
something like Dice weights is not further ex-
plained, but we expect an algorithm using Dice
weights would artificially limit the number of pos-
sible neighbours for each node and therefore re-
duce the number of possible root hubs signifi-
cantly.
Root hubs are chosen from the set of nodes of the
cooccurrence graph, given the following criteria:

1. The candidate node has at least six neigh-
bours, excluding root hubs and neighbours of
root hubs.

2. The six most frequent neighbours without
root hubs and neighbours of root hubs have
a mean weight under 0.8.

3. The candidate is not a neighbour of any pre-
viously chosen root hub.

The underlying algorithm to fulfil these criteria is
explained further into the documentation.
Before building the minimum spanning tree, the
target string is inserted back into the graph with a
distance of 0 to each root hub.
For disambiguation, Véronis iterates over each
node v in the minimum spanning tree and assigns
each a weight vector ω:

ωi =

{ 1
1+d(hi,v) , if v belongs to component i,
0 else.

with d(hi, v) being the distance between a root
hub hi and a node v.
For a given context, the weight vectors of each to-
ken are added up and the sense with the highest
cumulative weight is chosen.
We use Véronis’ root hub algorithm broadly with
more flexible parameters for our corpus. Our
disambiguation system still uses Hyperlex’ min-
imum spanning tree as a backup, but fundamen-
tally builds on graph propagation (Hamilton et al.,
2016).

3 Task set-up

We will be working on Task 11 of the SemEval-
2013 Workshop (Navigli and Vannella, 2013).
The aim of the task is to develop a Word Sense
Induction (WSI) tool, that can be used in Web

Search Result Clustering. The data is structured
as follows:
Each word we consider is a topic. For every
topic there is a list of the first 100 internet search
results, containing information on the found web
page, namely the URL, title and a text snippet.

3.1 Corpus
Our system uses an unordered plain-text
Wikipedia corpus from 2014. As the sense
set used in the task hails from Wikipedia, using
Wikipedia itself seemed like a natural fit. Because
of soft limits on how many nodes and edges our
system considers, an ordered corpus may favour
one sense over another based on if its article
randomly fell into our sample.
Additionally we add the titles and snippets of each
query to our corpus, since it offers us a guaranteed
baseline of around 500 nodes per sense.

4 Motivation

The graphs we build are so called ’small world
graphs’. The connection topography of a small
world graph, as described in Watts and Strogatz
(1998) lies between a complete random and a
complete ordered one. Therefore small world
graphs can be highly clustered, but still have
relatively short path lengths between the nodes.
The structural properties of these graphs are
defined by Characteristic Path Length L(p), which
measures the average separation between two
nodes in the graph and Clustering Coefficient
C(p), which measures the cliquishness of a
typical neighbourhood. The global Clustering
Coefficient ranges between 0 (for a completely
disconnected graph) and 1 (for a highly connected
graph). Characteristic Path Length and Clustering
Coefficient are calculated as follows:

L =
1

N

N∑
i=1

dmin(i, j)

C =
1

N

N∑
i=1

|E(Γ(i))|(|Γ(i)|
2

) ,

with node count (N ), the shortest distance be-
tween two nodes i, j (dmin(i, j)), degree of a node
i (Γ(i)) and proportion of connection between
neighbours Γ(i) of a node i (E(Γ(i))). To de-
termine whether a graph is indeed a small world



Target Lsys Csys Lrand Crand

COOL WATER 3.675 .528 6.025 0.030
SOUL FOOD 4.664 0.604 4.992 0.022
STEPHEN KING 3.649 0.552 3.791 0.014
THE BLOCK 3.905 0.329 3.721 0.006
AVERAGE 3.973 0.503 4.632 0.018

Table 2: Characteristic Path Length (L) and Global Cluster-
ing Coefficient (C) for our system and a random graph.

graph, L(p) and C(p) have to be evaluated against
a random connection topography of a graph of the
same size.
The random measures are calculated as follows:

Lrand ∼ log(N)/log(k)

Crand ∼ 2k/N.

A small world graph is defined as follows
(Véronis, 2004):

L ∼ Lrand

C >> Crand.

As can be seen in table 2, our graphs resemble
small world graphs, as they feature short Average
Path Lengths, but significantly higher Clustering
Coefficients, compared to what would be expected
of random graphs.
Véronis used these properties mostly for root hub
detection. We included a graph propagation sys-
tem for disambiguation, that again utilises these
graph properties.
Because our corpus is much less balanced than
Véronis (2004) and our task is more varied2, we
use a more flexible set of parameters and methods.
This task set-up does not support the use of heuris-
tic variables, as some terms are simply too infre-
quently represented in our corpus to build mean-
ingful graph representations. While the setting eu-
clidean mean of node frequency or edge frequency
as a minimum offers a solution to the problem of
sparse graphs for less represented terms, more fre-
quent terms seem to over-generate root hubs.
Graph propagation offers a simple method in
reducing the total number of senses by essen-
tially merging related root hubs, while retaining
the characteristic distribution of senses shown in
(Véronis, 2004).

2Véronis mostly disambiguates highly polysemous terms
and no proper names.

5 Systems

Every step of our induction system works with the
properties of small world graphs in mind. The
density of certain nodes makes them ideal root
hubs, from which a sense distribution can be prop-
agated somewhat organically. The work flow of
our system can be roughly translated into induc-
tion and disambiguation. The goal of the first task
is to produce sensible root hubs. These can be
more varied and numerous than in Véronis (2004),
as our system merges and shifts the overlying con-
cepts after initial induction. It is important to view
the root hubs in our system less as definitions and
more as a list of most influential context words
to induce meaning. The system can tell meaning
from a root hub, but the root hub itself is not the
meaning.

5.1 Word Sense Induction

Induction consists of two steps:

1. Construction and weighting of a cooccur-
rence graph.

2. Inducing root hubs from this graph.

Our graph is constructed in a straightforward ap-
proach, only considering paragraphs including our
target string. All nouns and verbs of this sub-
corpus are counted, with each cooccurrence within
a paragraph being an edge. Stop words are filtered,
as is the target string itself, after which every para-
graph containing less than 4 relevant tokens is dis-
carded.
Every node or edge, which frequency falls under a
certain threshold (See table 1.) is also discarded.
Our system uses the average number of occur-
rences instead of a heuristic measure, as our sys-
tem is robust enough to deal with overgeneration
of root hubs and our sub-corpora vary in size too
considerably to allow heuristic senses without un-
dergenerating root hubs for less frequent targets.
The graph is weight using the following method:

ωa,b = 1−max[p(A|B), p(B|A)], with

p(A|B) = fA,B/fB and

p(B|A) = fA,B/fA.

This weighting method is preferred to a measure
like Sørensen-Dice-Weight, as it allows root hubs
to have many outgoing edges, while their neigh-
bours can each have a meaningful relation to the



PARAMETER OUR SYSTEM HYPERLEX

MIN. DEGREE 5 6
MAX. MEAN WEIGHT 0.8 0.8

Table 3: Meta parameters for building a cooccurrence graph
for the analysed systems.

Figure 1: Example of Propagation for the target ’Pizza’.

root hub without the edge being discarded. To
collect root hubs, we use the algorithm shown in
Véronis (2004), iteratively choosing root hubs by
their degree and average weight with their most
frequent neighbours (See table 3). We then delete
the root hub and its neighbours from the graph be-
fore selecting the next hub. After no viable candi-
dates are left, the list of root hubs is returned.

5.2 Word Sense Disambiguation
For allocating contexts to senses, our system uses
the graph and list of root hubs built in previous
steps. Again, disambiguation is a two step pro-
cess, mirroring the induction process.
First, nodes are labelled according to their ’sense
preference’ using a propagation algorithm sim-
ilar to ones used to model voting behaviour
(H. Fowler, 2007) or for sentiment analysis (New-
man, 2003). The result is a labelled graph with a
sense distribution vector for each node. The best
sense of the cumulative vector for a given context
is chosen for clustering.
Véronis’ algorithm using minimum spanning
trees3 is used as a backup for contexts that could
not be matched using the propagation algorithm.

5.2.1 Sense Propagation
The goal of our propagation algorithm is to pro-
vide an approximation of how indicative a node is
for a sense from the root hub inventory. Given that

3A minimum spanning tree is defined as a sub-graph con-
taining all nodes of the original graph and whose cumulative
edge weights are a minimum (Kruskal, 1956).

our system adheres to the principle that the sense
of a word is defined by its neighbours, it would
follow that whether or not a node is indicative of a
sense is also defined by its neighbours. Véronis
(2004) offers an algorithm that maps senses to
nodes in a binary fashion, but in our understanding
a probabilistic distribution would be a more fitting
annotation of each node, as this leaves the possi-
bility of a node supporting multiple senses while
excluding others, without dividing sense groups.
Our system does not necessarily retain all original
root hubs, as they too can be assigned a different
sense during iteration (See figure 1). This allows
us to over-generate root hubs in earlier steps with-
out much repercussion.

Algorithm 1 Graph Labelling
1: procedure LABEL GRAPH
2: G← cooccurrence graph
3: H ← list of root hubs
4: stable← False
5: for node ∈ G do
6: node.ω ← (ω1...ωn)
7: ω0

1 ...ω
0
n ← 0

8: if node = h ∈ H then
9: ω0

h ← 1

10: i← 1
11: while stable = False do
12: stable = True
13: for node ∈ G, h ∈ H do
14: for nbr ∈ neighbours do
15: if h = argmax(nbr.ω) then
16: ωi

h ← ωi
h + (1− d(node, nbr))

17: node.ω ← 1
i+1

∑i
j=0 ω

j

18: if argmax(ω) 6= argmax( 1
i

∑i−1
j=0 ω

j) then
19: stable = False
20: i← i+ 1

return G

Algorithm 1 shows the process in which each
node is assigned a sense distribution vector. No-
tably only the best sense of each neighbour and
the weight of their edge4 (d) is considered, not the
entire distribution. As our graph is undirected, two
conflicting nodes would, should a node’s distribu-
tion be based on a neighbours own vector, tend
to balance each other out, with the graph only
reaching a stable state when every connected node
features the same distribution, including the same
’best sense’. This is of course not a desirable out-
come.

4We defined the weight of an edge earlier as the inverted
cooccurrence probability. As we aim to match the node to the
highest score, we chose to invert the measure back for this
step. An argmin function would work in much the same
way as our method.



Algorithm 2 Disambiguation w/ Labelled Graph
1: procedure DISAMBIGUATE
2: S ← context string
3: G← labelled graph
4: H ← list of root hubs
5: v ← score vector with length H
6: for token ∈ S do
7: if token ∈ G then
8: for h ∈ H do
9: vh ← vh + token.ωh · 1

1+d(token,h)

return argmax(v)

Our disambiguation algorithm (See algorithm
2) uses a score vector with weights for each root
hub. For each token in a given context, the sense
distribution vector is added to the score vector,
with each sense weight adjusted by the distance
of the token to the root hub.
Our system retains some binding of a sense to
a root hub, using the adjustment to counteract a
sense straying to far from its root during the prop-
agation step.

5.2.2 Minimum Spanning Tree
Contexts that could not be disambiguated using
the propagation algorithm are then processed by
the algorithm proposed in Véronis (2004). Tar-
get string and root hubs are added to the graph
with edge weights of 0. A minimum spanning tree
is constructed (Kruskal, 1956) and each node as-
signed a score in a similar way as above:

scorenode =
1

1 + d(node, roothub)

Again, the scores for each token in a context
are cumulated and the best sense is chosen for
clustering.

Our systems returns this cumulative mapping
of our propagation algorithm, supported by
Véronis’ components algorithm.

5.3 Baseline
We will be comparing our results to different
Baselines. Firstly we will use singleton and all-in-
one clustering. These are not linguistically or even
mathematically motivated clustering methods, our
Baseline, which is a more naı̈ve approach to graph
based word sense induction, features a basic ver-
sion of Véronis’ algorithm, but using conceptually
simple methods and measures. Instead of the root
hub selection algorithm detailed above, the base-
line simply selects the ten most frequent nodes as
root hubs.

The propagation and minimum spanning tree al-
gorithms are replaced by a distance based scoring
measure. Nodes v are assigned one-hot-vectors
based on distance d to each root hub h ∈ H .

ωi =

{
1, if hi = argmaxh∈H(d(hi, v)),
0 else.

The final cumulative score vector for a given con-
text of length n is essentially comprised of the
counts of tokens w corresponding to each sense.
The sense with the highest score is selected:

sense = argmaxh∈H(
∑
h∈H

ωw1 , ..., ωwn).

6 Evaluation

We use the MORESQUE dataset, consisting of
114 topics and their according search results.
To evaluate the properties of our cooccurrence
graph, we use the characteristic path length and
the clustering coefficient (See table 2).

6.1 Clustering Quality

SemEval-2013 Task 11 evaluates Clustering Qual-
ity on the basis of the following four metrics:

• F1-Measure

• Rand Index

• Adjusted Rand Index

• Jaccard Index

Additionally, S-recall at K and S-precision at r are
measured, as well as the average number of clus-
ters and average cluster size.

7 Results

System F1 JI
OUR SYSTEM 55.21 31.73

W/O MST 53.57 33.00
W/O LABELLING 50.13 46.20

BASELINE 49.87 42.52
SINGLETONS 68.66 0.00
ALL-IN-ONE 47.42 51.00

Table 4: Results for Jarrard Index (JI) and F1 measure.



System RI ARI
OUR SYSTEM 54.73 6.98

W/O MST 56.21 9.08
W/O LABELLING 53.63 5.51

BASELINE 51.76 3.26
SINGLETONS 49.00 -0.07
ALL-IN-ONE 51.00 0.00

Table 5: Results for Rand Index (RI) and Adjusted Rand In-
dex (ARI).

We will compare the results of our system to the
results of two different versions of it. The first
one doesn’t use minimum spanning tree for disam-
biguation. The second is based on the algorithm
proposed in Véronis (2004) and uses the same pa-
rameters (w/o Labelling). It however is not a faith-
ful recreation of the original system, as the corpus
used is not extracted from the target URLs. We
use these two versions for ablation studies.

System 50 60 70 80
OUR SYSTEM 33.99 22.51 17.78 14.51

W/O MST 36.82 22.98 17.18 13.94
W/O LABELLING 31.73 20.68 15.83 12.57

BASELINE 32.75 22.47 15.21 13.96

Table 6: S-precision@r

Figure 2: S-precision@r

Our system outperforms every baseline on the
development data, as would be expected. The
three versions of our system vary heavily depend-
ing on measure. Our system with our propagation
algorithm and minimum spanning tree as backup
performs well on F1-Measure, but lacks in Jac-
card Index. Our recreation of Hyperlex has the
best Jaccard Index, but is behind every other sys-
tem in all other measures. Jaccard Index may be
biased towards fewer larger clusters, as both our

system without labelling and all-in-one clustering
perform best in this category. Removing the min-
imum spanning tree as backup boosts Adjusted
Rand Index significantly, with a smaller bump in
Rand Index.

System # cl ACS
GOLD STANDARD 3.98 19.83
OUR SYSTEM 5.39 22.99

W/O MST 4.82 20.61
W/O LABELLING 1.46 74.81

BASELINE 4.54 33.69
Table 7: Average number of clusters (# cl.) and average clus-
ter size (ACS).

The gold standard features a smaller number of
clusters with a high average cluster size, which
would indicate that the development data may
not be an entirely accurate representation of most
sense distributions, as other sets have shown to
have different distributions (Navigli and Vannella,
2013). We expect better performance for Rand
Index and Adjusted Rand Index on a different
dataset.
We are hesitant to remove Véronis’ components
algorithm as backup, as the influence of the mini-
mum spanning tree is only minimal, but it supports
our system with a tried and tested approach, which
may outweigh the performance gain indicated on
the development set.
The low average cluster count may also have af-
fected the remarkably high performance of all-in-
one clustering, outperforming every other system
in Jaccard Index and Rand Index by a large mar-
gin. We expect this performance to drop signifi-
cantly when testing on datasets with higher cluster
counts.
Across the board, Adjusted Rand Index has been
the most reliable information about the perfor-
mance of our system, with the other measures be-
ing more susceptible to changes in cluster size and
count. While accurate prediction of number of
senses is certainly an important part of the task, we
felt overall clustering quality had to be optimised
before any reasonable approach in this direction
could be taken.



System 5 10 20 40
OUR SYSTEM 51.58 70.32 78.21 88.44

W/O MST 53.46 69.52 77.83 88.21
W/O LABELLING 55.99 65.77 73.75 84.69

BASELINE 55.14 66.25 76.18 87.41

Table 8: S-recall@K

Figure 3: S-recall@K

8 Conclusion

Working with a graph based system has offered
many opportunities to learn about a field of re-
search we previously had little knowledge about.
The similarity of cooccurrence networks and hu-
man relations in small world graphs lead to a broad
spectrum of possible approaches to optimising a
system that had been tried and tested for over a
decade. Our system producing pretty good results
on the development data has been an added bonus.
We were surprised by the performance of our sys-
tem so far. Hyperlex has proved to be a very ro-
bust baseline on which to build on. Working with
a different and less balanced corpus than the origi-
nal has lead to interesting problems, which we ap-
proached both with more flexible parameters and
a different, more forgiving algorithm.
Small world graphs, not really a native field of
computational linguistic research, have proven
themselves quite apt in modelling semantic rela-
tions, which we did not expect before researching
this project. In the end, words are closer than peo-
ple.
Even though the graphs our system built were use-
ful and stable, better results could be obtained
by using various sources instead of the Wikipedia
corpus. Especially proper names of obscure bands
and other pop culture references have posed a
challenge to our system, which could have been
solved with a less informative and more entertain-

ment based corpus.
We chose not to use the URLs for multiple rea-
sons, mostly because with internet connectivity
it would add another dependency to our system,
without really offering the whole span of possibil-
ities the web entails. Our corpus is formatted in
plain text, which would not be available for text
extracted with URLs. An HTML text extractor
and special stop word list would have needed to
be added as well and would have bloated our sys-
tem with little gain.
We would have liked to have tested a few more
features with more time and a larger development
set. The number of minimum neighbours for a
root hub is still heuristic5 and the same reasoning
for making minimum frequencies dynamic would
have applied here. log(Γ(i)) · Γ(i) was tested to
promising results, but still performed worse than
the heuristic measure.
Additionally we would have liked to create a ver-
sion of our system where the disambiguation task
is fully independent of our root hub list after la-
belling. In the end, the possible gain did not
outweigh the overall overhead the implementation
would create. Still, making our system less depen-
dent on Véronis (2004) was remains a daunting
idea to us.

Figure 4: Graphs of different sizes.6

In the end, this has been a learning experience
beyond semantics and graphs. We did pick up
quite a lot about tools and resources in research-
ing and managing a project of this size. This will
certainly come in handy when it comes to the soft-
ware project and other course projects.

5We lowered it from 6 to 5 for our system based on limited
tests on the development data.

6From top left to bottom right:
cool water, soul food, stephen king, the block
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