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Abstract

ABSINTH' provides a novel graph based
approach to word sense induction for
Task 11 of SemEval-2013, combining
work from multiple fields of natural lan-
guage processing, most notably Hyperlex
(Véronis, 2004) and sentiment propaga-
tion (Hamilton et al., 2016).

1 Introduction

As late as twelve years after publication, the graph
based approach to word sense induction proposed
in Véronis (2004) is still cited as ’state-of-the-art’
(Tripodi and Pelillo 2016, Ustalov et al. 2017). We
build on the principles laid out in Hyperlex with a
more dynamic feature set as well as recent meth-
ods, previously used mostly for sentiment analy-
sis.

Our system provides a simple yet efficient two-
step solution to SemEval-2013 Task 11 (Navigli
and Vannella, 2013). To achieve this we utilise
the properties of small world graphs for language
(Cancho and Solé, 2001) in general and semantic
relations (Newman, 2003) in particular. We ex-
tract senses using the root hub algorithm proposed
in Véronis (2004) with adjusted, flexible features
for corpora of varying sizes.

For word sense disambiguation we use the sense
inventory created in previous steps and a graph
propagation algorithm to assign each node a sense
distribution vector. Lastly, the vectors of each
word in a given context are summed up and the
context is assigned the sense of the best cumula-
tive weight.

In addition to the SemEval scoring methods to
evaluate our results we use Characteristic Path
Length and Global Clustering Coefficient to eval-
uate the properties of our cooccurrence graphs.
Our system results lie within the expected perfor-
mance as set by the original task participants.

! Association Based Semantic Induction Tools from Hei-
delberg

PARAMETER OUR SYSTEM | HYPERLEX | BASELINE
MIN. CONTEXT 4 4 4
MIN. #NODES AVG. #NODES 10 9
MIN. #EDGES AVG. #EDGES 5 3
MAX. WEIGHT 0.9 0.9 0.9

Table 1: Meta parameters for building a cooccur-
rence graph for the analysed systems.

2 Related Work

Graph based approaches to word sense induction
have been successfully used since the early 2000s
(Véronis 2004, Di Marco and Navigli 2013).
Véronis proposes the use of root hub detection
and minimum spanning trees (Kruskal, 1956) to
induce senses and disambiguate search results.
The usefulness of the properties of small world
graphs for sense disambiguation has been shown
previously in Newman (2003). The term ’Small
World” was introduced by Travers and Milgram,
who used it to describe the connectedness of
acquaintance networks (Travers and Milgram,
1969). According to their findings, the aver-
age path length between two people living in the
United States lies around five or six, even though
they are selected from a relatively large number of
people. The properties of these small world graphs
have been formally described in Watts and Stro-
gatz (1998) and we will see later on that the graph
we are using is indeed a small world graph, as the
words are connected in a similar way.

Because of this property, nodes with a high degree
(number of outgoing edges) can be selected as so
called ’root hubs’. It is assumed, that words be-
longing to a sense are clustered around these root
hubs and meaning can be induced by mapping a
vocabulary to them.

Véronis uses paragraphs including the target string
from a web corpus as contexts for building cooc-
currence graphs, with two words occurring within
a context being an edge. Paragraphs with fewer
than 4 words are discarded, further limits on
nodes, edges and their weights are introduced (See



table 1). The target string is not included in the
graph.

Higher associated edges are assigned lower
weights using a weighting system explained later
on. Why this weighting algorithm is chosen over
something like Dice weights is not further ex-
plained, but we expect an algorithm using Dice
weights to artificially limit the number of possi-
ble neighbours for each node and therefore reduce
the number of possible root hubs significantly.
Root hubs are chosen from the set of nodes of the
cooccurrence graph, given the following criteria:

1. The candidate node has at least six neigh-
bours, excluding root hubs and neighbours of
root hubs.

2. The six most frequent neighbours without
root hubs and neighbours of root hubs have
a mean weight under 0.8.

3. The candidate is not a neighbour of any pre-
viously chosen root hub.

The underlying algorithm to fulfil these criteria is
explained further into the documentation.

Before building the minimum spanning tree, the
target string is inserted back into the graph with a
distance of O to each root hub.

For disambiguation, Véronis iterates over each
node v in the minimum spanning tree and assigns
each a weight vector w:

o = m, if v belongs to component i,
0 else.

with d(h;,v) being the distance between a root
hub h; and a node v.

For a given context, the weight vectors of each to-
ken are added up and the sense with the highest
cumulative weight is chosen.

We use Véronis’ root hub algorithm broadly with
more flexible parameters for our corpus. Our
disambiguation system still uses Hyperlex’ min-
imum spanning tree as a backup, but fundamen-
tally builds on graph propagation (Hamilton et al.,
2016).

3 Task Setup

We will be working on Task 11 of the SemEval-
2013 Workshop (Navigli and Vannella, 2013).
The aim of the task is to develop a Word Sense
Induction (WSI) tool, that can be used in Web

Search Result Clustering. The data is structured
as follows:

Each word, that we will consider is a topic. For
every topic there is a list of the first 100 Internet
search results, containing information on the
found web page, namely the URL, title and a text
snippet.

3.1 Corpus

Our system uses an unordered plain-text
Wikipedia corpus from 2014. As the sense
set used in the task hails from Wikipedia, using
Wikipedia itself seemed like a natural fit. Because
of soft limits on how many nodes and edges our
system considers, an ordered corpus may favour
one sense over another based on if its article
randomly fell into our sample.

Additionally we add the titles and snippets of each
query to our corpus, since it offers us a guaranteed
baseline of around 500 nodes per sense.

4 Motivation

As noted before, the graphs we will build are
so called ’small world graphs’. The connection
topography of a small world graph, as described in
Watts and Strogatz (1998) lies between a complete
random and a complete ordered one. Therefore
small world graphs can be highly clustered, but
still have relatively short path lengths between the
nodes.

The structural properties of these graphs are
defined by Characteristic Path Length L(p), which
measures the average separation between two
nodes in the graph and Clustering Coefficient
C(p), which measures the cliquishness of a
typical neighbourhood. The global Clustering
Coefficient ranges between 0 (for a completely
disconnected graph) and 1 (for a highly connected
graph). Characteristic Path Length and Clustering
Coefficient are calculated as follows:

1 N
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with node count (INV), the shortest distance be-

tween two nodes 4, j (dpmin (7, 7)), degree of a node
i (I'(7)) and proportion of connection between



Target Lsys Csys Lrand Crand
COOL_WATER 3.675 528  6.025 0.030
SOUL_FOOD 4.664 0.604 4.992 0.022
STEPHEN_KING | 3.649 0.552 3.791 0.014
THE_BLOCK 3.905 0.329 3.721 0.006
AVERAGE 3.973 0.503 4.632 0.018

Table 2: Characteristic Path Length (L) and Global
Clustering Coefficient (C) for our system and a
random graph.

neighbours I'(7) of a node ¢ (F(I'(z))). To de-
termine whether a graph is indeed a small world
graph, L(p) and C(p) have to be evaluated against
a random connection topography of a graph of the
same size.

The random measures are calculated as follows:

Lrand ~ lOg(N)/lOg(k)
Chrana ~ 2k/N.

As can be seen in table 2, our graphs resem-
ble small world graphs, because they have a short
Average Path Length, but a significantly higher
Clustering Coefficient than a random graph would
have.

Véronis used these properties for root hub detec-
tion. We included another system for disambigua-
tion, namely a graph propagation algorithm, that
again builds on these properties of the graph.
Because our corpus is much less balanced than
Véronis (2004) and our task is more varied”, we
use a more flexible set of parameters and methods.
This task setup does not support the use of heuris-
tic variables, as some terms are simply too infre-
quently represented in our corpus to build mean-
ingful graph representations. While the euclidean
mean offers a solution to the problem of sparse
graphs for less represented terms, more frequent
terms seem to overgenerate root hubs.

Graph propagation offers a simple method in
reducing the total number of senses by essen-
tially merging related root hubs, while retaining
the characteristic distribution of senses shown in
(Véronis, 2004).

S Systems

Every step of our induction system works with the
properties of small world graphs in mind. The
density of certain nodes makes them ideal root

2Véronis mostly disambiguates highly polysemous terms
and no proper names.

hubs, from which a sense distribution can be prop-
agated somewhat organically. The work flow of
our system can be roughly translated into induc-
tion and disambiguation. The goal of the first task
is to produce sensible root hubs. These can be
more varied and numerous than in Véronis (2004),
as our system merges and shifts the overlying con-
cepts after initial induction. It is important to view
the root hubs in our system less as definitions and
more as a list of most influential context words
to induce meaning. The system can tell meaning
from a root hub, but the root hub itself is not the
meaning.

5.1 Word Sense Induction

Induction consists of two steps:

1. Construction and weighting of a cooccur-
rence graph.

2. Inducing root hubs from this graph.

Our graph is constructed in a straightforward ap-
proach, only considering paragraphs including our
target string. All nouns and verbs of this sub-
corpus are counted, with each cooccurrence within
a paragraph being an edge. Stop words are filtered,
as is the target string itself, after which every para-
graph containing less than 4 relevant tokens is dis-
carded.

Every node or edge, which frequency falls under a
certain threshold (See table 1.) is also discarded.
Our system uses the average number of occur-
rences instead of a heuristic measure, as our sys-
tem is robust enough to deal with overgeneration
of root hubs and our sub-corpora vary in size too
considerably to allow heuristic senses without un-
dergenerating root hubs for less frequent targets.
The graph is weight using the following method:

wap =1 —maz[p(A|B),p(B|A)],  with
p(A|B) = faB/fB and
p(B|A) = fa.B/fa-

This weighting method is preferred to a measure
like Sgrensen-Dice-Weight, as it allows root hubs
to have many outgoing edges, while their neigh-
bours can each have a meaningful relation to the
root hub without the edge being discarded. To
collect root hubs, we use the algorithm shown in
Véronis (2004), iteratively choosing root hubs by
their degree and average weight with their most
frequent neighbours (See table 3). We then delete



PARAMETER OUR SYSTEM | HYPERLEX
MIN. DEGREE 5 6
MAX. MEAN WEIGHT 0.8 0.8

Table 3: Meta parameters for building a cooccur-
rence graph for the analysed systems.

Figure 1: Example of Propagation for the target
"Pizza’.

the root hub and its neighbours from the graph be-
fore selecting the next hub. After no viable candi-
dates are left, the list of root hubs is returned.

5.2 Word Sense Disambiguation

For allocating contexts to senses, our system uses
the graph and list of root hubs built in previous
steps. Again, disambiguation is a two step pro-
cess, mirroring the induction process.

First, nodes are labelled according to their ’sense
preference’ using a propagation algorithm sim-
ilar to ones used to model voting behaviour
(H. Fowler, 2007) or for sentiment analysis (New-
man, 2003). The result is a labelled graph with a
sense distribution vector for each node. The best
sense of the cumulative vector for a given context
is chosen for clustering.

Véronis’ algorithm using minimum spanning
trees’ is used as a backup for contexts that could
not be matched using the propagation algorithm.

5.2.1 Sense Propagation

The goal of our propagation algorithm is to pro-
vide an approximation of how indicative a node is
for a sense from the root hub inventory. Given that
our system adheres to the principle that the sense
of a word is defined by its neighbours, it would

3 A minimum spanning tree is defined as a sub-graph con-
taining all nodes of the original graph and whose cumulative
edge weights are a minimum (Kruskal, 1956).

follow that whether or not a node is indicative of a
sense is also defined by its neighbours. Véronis
(2004) offers an algorithm that maps senses to
nodes in a binary fashion, but in our understanding
a probabilistic distribution would be a more fitting
annotation of each node, as this leaves the possi-
bility of a node supporting multiple senses while
excluding others, without dividing sense groups.
Our system does not necessarily retain all original
root hubs, as they too can be assigned a different
sense during iteration (See figure 1). This allows
us to overgenerate root hubs in earlier steps with-
out much repercussion.

Algorithm 1 Graph Labelling

1: procedure LABEL_GRAPH

2 G < cooccurrence graph
3 H <+ list of root hubs

4: stable < False

5: for node € Gdo
6

7

8

node.w + (w1...wn)

Wl wd 0

if node = h € H then

w1

10: 141
11: while stable = False do
12: stable = T'rue
13: for node € G,h € Hdo
14: for nbr € neighbours do
15: if h = argmaz(nbr.w) then
16: wh, < wh + (1 — d(node, nbr))
17: node.w w% o W’
18: if argmaz(w) # argmaz(+ Z]’;}) w’) then
19: stable = False
20: 1141

return G

Algorithm 1 shows the process in which each
node is assigned a sense distribution vector. No-
tably only the best sense of each neighbour and
the weight of their edge* (d) is considered, not the
entire distribution. As our graph is undirected, two
conflicting nodes would, should a node’s distribu-
tion be based on a neighbours own vector, tend
to balance each other out, with the graph only
reaching a stable state when every connected node
features the same distribution, including the same
"best sense’. This is of course not a desirable out-
come.

“We defined the weight of an edge earlier as the inverted
cooccurrence probability. As we aim to match the node to the
highest score, we chose to invert the measure back for this
step. An argman function would work in much the same
way as our method.



Algorithm 2 Disambiguation w/ Labelled Graph

1: procedure DISAMBIGUATE
: S < context string
G + labelled graph
H < list of root hubs
v 4 score vector with length H
for token € S do
if token € G then
for h € H do
v v + token.wy, -
return argmaz(v)

VoA nkwn

1
1+d(token,h)

Our disambiguation algorithm (See algorithm

2) uses a score vector with weights for each root
hub. For each token in a given context, the sense
distribution vector is added to the score vector,
with each sense weight adjusted by the distance
of the token to the root hub.
Our system retains some binding of a sense to
a root hub, using the adjustment to counteract a
sense straying to far from its root during the prop-
agation step.

5.2.2 Minimum Spanning Tree

Contexts that could not be disambiguated using
the propagation algorithm are then processed by
the algorithm proposed in Véronis (2004). Tar-
get string and root hubs are added to the graph
with edge weights of 0. A minimum spanning tree
is constructed (Kruskal, 1956) and each node as-
signed a score in a similar way as above:

1
1 + d(node, roothub)

SCOT Enode =

Again, the scores for each token in a context
are cumulated and the best sense is chosen for
clustering.

Our systems returns this cumulative mapping
of our propagation algorithm, supported by
Véronis’ components algorithm.

5.3 Baseline

We will be comparing our results to different
Baselines. Firstly we will use Singleton and All-
In-One clustering. Because these Baselines aren’t
linguistically motivated, but mere clustering solu-
tions we added another Baseline, which is a naive
approach to graph based word sense induction. In-
stead of the root hub selection algorithm detailed
above, the baseline simply selects the ten most fre-
quent nodes as root hubs.

The propagation and minimum spanning tree al-
gorithms are replaced by a distance based scoring

measure. Nodes v are assigned one-hot-vectors
based on distance d to each root hub h € H.

U
Wy = 0

The final cumulative score vector for a given con-
text of length n is essentially comprised of the
counts of tokens w corresponding to each sense.
The sense with the highest score is selected:

if hy = argmazpen(d(hs, v)),
else.

sense = argmazpep( E Wiy y ooy Wapy, )-
heH

6 Evaluation

We use a very small subset of the MORESQUE
dataset, consisting of four topics and their accord-
ing search results.

To evaluate the properties of our cooccurrence
graph, we use the characteristic path length and
the clustering coefficient (See table 2).

6.1 Clustering Quality

SemEval-2013 Task 11 evaluates Clustering Qual-
ity on the basis of the following four metrics:

e Fl-Measure
e Rand Index
e Adjusted Rand Index
e Jaccard Index
Additionally, S-recall at K and S-precision at r are

measured, as well as the average number of clus-
ters and average cluster size.

7 Results

System F1 JI
OUR SYSTEM 70.95 41.65

W/0 MST 67.87 42.07

W/ HYPERLEX PARAMETERS | 64.38 40.76
BASELINE 66.63 45.59
SINGLETONS 75.51 0.00
ALL-IN-ONE 66.09 69.28

Table 4: Results for Jarrard Index (JI) and F1 mea-
sure.



Table 5: Results for Rand Index (RI) and Adjusted
Rand Index (ARI).

We will compare the results of our system to the
results of two different versions of it. The first
one doesn’t use minimum spanning tree for disam-
biguation. The second is based on the algorithm
proposed in Véronis (2004) and uses the same pa-
rameters (Hyperlex). It however is not a faithful
recreation of the original system, as the corpus
used is not extracted from the target URLs.

System 50 60 70 80
OUR SYSTEM 49.05 34.17 24.68 20.25
W/0 MST 50.83 35.21 25.40 20.77
w/ HYPERLEX PARAMETERS | 31.11 25.36 20.59 14.40
BASELINE 3423 21.18 1521 12.92

Table 6: S-precision@r

S-precision @ r

Figure 2: S-precision@r

Our system outperforms every baseline on the
development data, as would be expected. Because
of the small size of the development data and the
heuristic parameter values, our recreation of the
Hyperlex system (Véronis, 2004) did not create
any clusters for cool_water, which resulted in a
significant drop in performance, as can be seen in
figure 2, as well as in the results for our baseline
using similar measures.

System RI  ARI System #cl ACS
OUR SYSTEM 57.32 12.30 GOLD STANDARD 2.75 34.83
W/O MST 57.56  13.81 OUR SYSTEM 6.5 16.69
w/ HYPERLEX PARAMETERS | 50.58 00.74 W/O MST 6 15.43
BASELINE 48.77 -3.57 w/ HYPERLEX PARAMETERS 3 49.56
SINGLETONS 30.72 -0.01 BASELINE 525 2545
ALL-IN-ONE 69.28 0.00

Table 7: Average number of clusters (# cl.) and
average cluster size (ACS).

The gold standard features a very small num-
ber of clusters with a high average cluster size,
which would indicate that the development data
may not be an entirely accurate representation of
most sense distributions, as other sets have shown
to have different distributions (Diab et al., 2013).
We expect better performance for Rand Index and
Adjusted Rand Index on a larger dataset.

Any difference between our system and our sys-
tem without Véronis’ components algorithm as
backup is well within standard variance. The in-
fluence of the minimum spanning tree is only min-
imal, but it supports our system with a tried and
tested approach, which easily outweighs any per-
formance gain indicated on this admittedly small
development set.

The low average cluster count may also have af-
fected the remarkably high performance of all-in-
one clustering, outperforming every other system
in Jaccard Index and Rand Index by a large mar-
gin. We expect this performance to drop signifi-
cantly when testing on datasets with higher cluster
counts.

Across the board, Adjusted Rand Index has been
the most reliable information about the perfor-
mance of our system, with the other measures be-
ing more susceptible to changes in cluster size and
count. While accurate prediction of number of
senses is certainly an important part of the task, we
felt overall clustering quality had to be optimised
before any reasonable approach in this direction
could be taken.

Notable is also the difference in Adjusted Rand In-
dex between the two systems with flexible node
and edge number minimums (our system) and
those without. This change could be attributed to
the failure to induce cool_water as well, but needs
to be tested on a larger dataset.



System 1 2 4 8
OUR SYSTEM 39.58 45.83 58.33 91.67
W/0 MST 39.58 45.83 66.67 91.67
W/ HYPERLEX PARAMETERS | 31.25 39.58 62.50 79.17
BASELINE 39.58 54.17 54.17 70.83
Table 8: S-recall@K
® our

RO S

y/ == #--4--4 ¥ pazeline
,

._0-”0’“-0-‘--‘

Secall @ K

Figure 3: S-recall@K

8 Conclusion

Working with a graph based system has offered
many opportunities to learn about a field of re-
search we previously had little knowledge about.
The similarity of cooccurrence networks and hu-
man relations in small world graphs lead to a broad
spectrum of possible approaches to optimising a
system that had been tried and tested for over a
decade. Our system producing pretty good results
on the development data has been an added bonus.
We were surprised by the performance of our sys-
tem so far. Hyperlex has proved to be a very ro-
bust baseline on which to build on. Working with
a different and less balanced corpus than the origi-
nal has lead to interesting problems, which we ap-
proached both with more flexible parameters and
a different, more forgiving algorithm.

Working with such a limited dataset has shown to
be quite challenging without implementing some
systems to not only evaluate the finished output,
but also smaller steps along the way. We would
have liked to have more data available, but it
forced us to get more in-depth with out system,
which helped our project in the long run. A larger
dataset would have allowed us to partition a held-
out set for internal testing though, which would
have been quite useful along the way.

Small world graphs, not really a native field of
computational linguistic research, have proven
themselves quite apt in modelling semantic rela-

tions, which we did not expect before researching
this project. In the end, words are closer than peo-
ple.

Even though the graphs our system built were use-
ful and stable, better results could be obtained
by using various sources instead of the Wikipedia
corpus. Especially proper names of obscure bands
and other pop culture references have posed a
challenge to our system, which could have been
solved with a less informative and more entertain-
ment based corpus.

We chose not to use the URLs for multiple rea-
sons, mostly because with internet connectivity
it would add another dependency to our system,
without really offering the whole span of possibil-
ities the web entails. Our corpus is formatted in
plain text, which would not be available for text
extracted with URLs. An HTML text extractor
and special stop word list would have needed to
be added as well and would have bloated our sys-
tem with little gain.

We would have liked to have tested a few more
features with more time and a larger development
set. The number of minimum neighbours for a
root hub is still heuristic’ and the same reasoning
for making minimum frequencies dynamic would
have applied here. log(T'(¢)) - T'(7) was tested to
promising results, but still performed worse than
the heuristic measure.

In the end, this has been a learning experience be-
yond semantics and graphs. We did pick up quite
a lot about tools and resources in researching and
managing a project of this size. This will cer-
tainly come in handy when it comes to the soft-
ware project and other course projects.
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