Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import torch
import tqdm
import numpy as np
import evaluate
import json
import random
import math
from tqdm.auto import tqdm
from transformers import BertTokenizer, RobertaTokenizer, BertModel, RobertaModel, RobertaPreTrainedModel, RobertaConfig, BertConfig, BertPreTrainedModel, PreTrainedModel, AutoModel, AutoTokenizer
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from transformers import AdamW, get_scheduler
from torch import nn
from torch.nn import CrossEntropyLoss
import matplotlib.pyplot as plt
import os
import pandas as pd
import sklearn
metric=evaluate.load("accuracy")
torch.cuda.empty_cache()
def reposition(dp, old_dataset=False):
"""Reposition fucntion to find the character level indices of the metonymy (to map back in tokenier_new
function by char_to_tokens)
params:
dp -> json readin of li et al shaped dataset
returns:
new_start -> int: new start position of metonymy on character level (including whitespaces)
new_end -> int: new end position of metonymy on character level(including whitespaces)"""
new_start=0
new_end=0
if old_dataset ==False:
new_dp= " ".join(dp["sentence"]).lower()
if dp["pos"][0]==0:
new_start=len(" ".join(dp["sentence"][:dp["pos"][0]]))
else:
new_start=len(" ".join(dp["sentence"][:dp["pos"][0]]))+1
new_end=len(" ".join(dp["sentence"][dp["pos"][0]:dp["pos"][1]]))+new_start
assert new_dp[new_start:new_end] == " ".join(dp["sentence"][dp["pos"][0]:dp["pos"][1]]).lower()
elif old_dataset ==True:
new_dp= " ".join(dp["sentence"][1]).lower()
if dp["pos"][0]==0:
new_start=len(" ".join(dp["sentence"][1][:dp["pos"][0]]))
else:
new_start=len(" ".join(dp["sentence"][1][:dp["pos"][0]]))+1
new_end=len(" ".join(dp["sentence"][1][dp["pos"][0]:dp["pos"][1]]))+new_start
assert new_dp[new_start:new_end] == " ".join(dp["sentence"][1][dp["pos"][0]:dp["pos"][1]]).lower()
return new_start, new_end
def tokenizer_new(tokenizer, input, max_length, masked=False, old_dataset=False, context=None):
""" Tokenizing function to tokenize a li et al shaped dataset (list of dictionaries) to create inputs for BERt/RoBERTa
1. encode the input and find the metonymy tokens (via reposition function)
2. map the tokens back to strings to verify the correctnes of the token indices
3. add all attention masks, tokentype ids (only for BERT), input ids, labels, new start positions, new end positions
to dataset
params:
tokenizer -> AutoTokenizer.from_pretrained('tokenizer_name'): BERT/RoBERTa tokenizer
input -> dataset to tokenize (json read in)
max_length -> int:max length to pad
masked -> bool:mask metonymies?
context -> left right or balaces: add context from left or right? fill up on other side if not enough (left or right)
"""
all_start_positions=[]
all_end_positions=[]
all_labels=[]
all_attention_masks=[]
all_token_type_ids=[]
all_input_ids=[]
for dp in input:
if masked == True:
dp["sentence"][dp["pos"][0] : dp["pos"][1]] == "<mask>"
#if old_dataset == False:
#find new char-pos for metonymic word
#new_start_pos, new_end_pos = reposition(dp)
#old_target=" ".join(dp["sentence"][dp["pos"][0]:dp["pos"][1]]).lower()
#### implement rest: tokenize metonymic sentence and encode the rest and pad with it
#old_target=new_dp[dp["pos"][0]: dp["pos"][1]].lower() #old target already on character level
#assert new_dp[new_start_pos:new_end_pos].strip() == "".join(dp["sentence"][dp["pos"][0]: dp["pos"][1]]).lower()
if old_dataset == False:
new_start_pos, new_end_pos = reposition(dp, old_dataset=False)
new_dp= " ".join(dp["sentence"]).lower()
encoded_inp=tokenizer.encode_plus(new_dp, add_special_tokens=True, max_length=max_length, padding="max_length", truncation=True)
#tf_tokens=tokenizer.convert_ids_to_tokens(encoded_inp["input_ids"])
#print(tf_tokens)
#print(typ(encoded_inp))
old_target="".join(dp["sentence"][dp["pos"][0]:dp["pos"][1]]).lower()
else:
new_start_pos, new_end_pos = reposition(dp, old_dataset=True)
new_dp= " ".join(dp["sentence"][1]).lower()
encoded_inp=tokenizer.encode_plus(new_dp, add_special_tokens=True) #dont add max length and padding so we can do it manually
length_metonymies = len(encoded_inp["input_ids"])
context_len=max_length - length_metonymies #length of how much context tokens we can add. We add from left to right
#print("metonymy sentece: ", new_dp)
#print("metonymy sentence inputs: ", encoded_inp)
#print("context length: ", context_len)
inp_before=" ".join(dp["sentence"][0]).lower()
#print("input before: ", inp_before)
encoded_inp_before=tokenizer.encode_plus(inp_before, add_special_tokens=True) #encode before and after context
#print("encoded inputs before: ", encoded_inp_before)
#print("\n")
inp_after=" ".join(dp["sentence"][2]).lower()
#print("input after: ", inp_after)
encoded_inp_after=tokenizer.encode_plus(inp_after , add_special_tokens=True)
#print("encoded inputs after: ", encoded_inp_after)
#print("\n")
#print("\n")
#Preprare input for new dictionary with context
context_input_ids=[]
context_attention_masks=[]
if tokenizer.name_or_path[0] == "b": #BER Tokenizer has token type ids too
context_token_type_ids=[]
length_before=len(encoded_inp_before["input_ids"])
length_after=len(encoded_inp_after["input_ids"])
if length_before>=context_len/2 and length_after>=context_len/2:
index_before=int(context_len/2)
index_after=int(context_len/2)
elif length_before<context_len/2 and length_after>=context_len/2:
index_before=length_before
difference_before=(context_len/2)-length_before
wanted_from_after=(context_len/2)+difference_before
if wanted_from_after>=length_after:
index_after=length_after
else:
index_after=int(math.ceil(wanted_from_after))
elif length_after<context_len/2 and length_before>=context_len/2:
index_after=length_after
difference_after=(context_len/2)-length_after
wanted_from_before=(context_len/2)+difference_after
if wanted_from_before >=length_before:
index_before=length_before
else:
index_before=int(math.ceil(wanted_from_before))
elif length_before<context_len/2 and length_after<context_len/2:
index_before=length_before
index_after=length_after
#print("len before: ", length_before)
#print("len after: ", length_after)
#print("index_before: ", index_before)
#print("index_after: ", index_after)
#print("not used: ", context_len-index_before-index_after)
#Use the calculated indices to append the right tokens and pad to 512 if needed, recalculate metonymy position and prepare for decoding metonymy
#before_decoded="".join(tokenizer.decode(encoded_inp_before["input_ids"][length_before-index_before:length_before]))
#if tokenizer.name_or_path[0]=="b":
# before_decoded.replace("[CLS]", "") #.replace(" [SEP]", "")
#print(before_decoded)
context_input_ids=context_input_ids + encoded_inp_before["input_ids"][length_before-index_before:length_before]
context_input_ids=context_input_ids + encoded_inp["input_ids"]
context_input_ids=context_input_ids + encoded_inp_after["input_ids"][length_after-index_after:length_after]
context_input_ids=context_input_ids+([0]*(512-len(context_input_ids))) #pad
#print("new input ids: ", len(context_input_ids))
context_attention_masks= context_attention_masks+encoded_inp_before["attention_mask"][length_before-index_before:length_before]
context_attention_masks=context_attention_masks+encoded_inp["attention_mask"]
context_attention_masks=context_attention_masks+encoded_inp_after["attention_mask"][length_after-index_after:length_after]
context_attention_masks=context_attention_masks+([0]* (512-len(context_attention_masks))) #pad
#print("new attention maks: ", len(context_attention_masks))
if tokenizer.name_or_path[0] == "b": #BER Tokenizer has token type ids too
context_token_type_ids=context_token_type_ids + encoded_inp_before["token_type_ids"][length_before-index_before:length_before]
context_token_type_ids=context_token_type_ids +encoded_inp["token_type_ids"]
context_token_type_ids=context_token_type_ids +encoded_inp_after["token_type_ids"][length_after-index_after:length_after]
context_token_type_ids=context_token_type_ids+([0]*(512-len(context_token_type_ids)))
#print("new token type ids: ", len(context_token_type_ids))
assert len(context_token_type_ids) == 512
assert len(context_input_ids) == 512 and len(context_attention_masks) == 512
#get tokeniized words for before sentence and the metonymy sentence
tokenized_before=[]
for i in range(len(" ".join(dp["sentence"][0]).lower())):
tokenized_before.append((encoded_inp.char_to_token(i, sequence_index=0)))
#print(tokenized_before)
#tokenized_words = []
#for i in range(len(new_dp)): #range(len(new_dp))
# tokenized_words.append((encoded_inp.char_to_token(i, sequence_index=0)))
#print(tokenized_words)
#span=[]
#for i in tokenized_words[new_start_pos:new_end_pos]:
# if i is not None:
# span.append(i+len(encoded_inp_before["input_ids"]))
#new_start_pos=new_start_pos+len(encoded_inp_before["input_ids"]) #update inces by adding the number of tokens that are in before sentence
#new_end_pos=new_end_pos+len(encoded_inp_before["input_ids"])
#print(span)
#indices_to_tokens=list(set(span))
#indices_to_tokens.sort()
#print(indices_to_tokens)
#if len(indices_to_tokens)==1:
# print("decoding 1")
# decoded="".join(tokenizer.decode(context_input_ids[indices_to_tokens[0]])).strip().replace(" ", "")
#else:
# print("decoding 2")
# #print("indices_to_tokens: ", indices_to_tokens)
# decoded="".join(tokenizer.decode(context_input_ids[indices_to_tokens[0]:indices_to_tokens[-1]+1])).strip().replace(" ", "")
#print(decoded)
old_target="".join(dp["sentence"][1][dp["pos"][0]:dp["pos"][1]]).lower()
#print("old_target: ", old_target)
#make an encoded_inp dictionary -> not needed, because we use lists directly
#encoded_inp={"input_ids": context_input_ids, "attention_mask": context_attention_masks}
#if tokenizer.name_or_path[0] =="b":
# encoded_inp["token_type_ids"]=context_token_type_ids
#print(encoded_inp)
#print(len(encoded_inp["input_ids"]))
#li et al approach
"""
if old_dataset==False:
orig_to_tok_index2=[]
all_tokens2 = ['[CLS]']
for (i, token) in enumerate(dp["sentence"]):
orig_to_tok_index2.append(len(all_tokens2))
sub_tokens = tokenizer#.tokenize(token)
for sub_token in sub_tokens:
all_tokens2.append(sub_token)
orig_to_tok_index2.append(len(all_tokens2))
new_target="".join(tf_tokens[orig_to_tok_index2[dp["pos"][0]]:orig_to_tok_index2[dp["pos"][1]]]).replace("##", "").lower()
print("orig to tok index: ", [orig_to_tok_index2[dp["pos"][0]], orig_to_tok_index2[dp["pos"][1]]])
print("new_target: ", repr(new_target))
"""
tokenized_words = []
for i in range(len(new_dp)): #range(len(new_dp))
#if(new_dp[i])==" ":
# continue #spaces are connected with the words with the roberta tokenizer and are thus always mapped to None
tokenized_words.append((encoded_inp.char_to_token(i, sequence_index=0)))
span=[]
for i in tokenized_words[new_start_pos:new_end_pos]:
if i is not None:
if old_dataset==True:
span.append(i+index_before)
else:
span.append(i)
#if old_dataset==True:
# new_start_pos=new_start_pos+len(encoded_inp_before["input_ids"]) #update inces by adding the number of tokens that are in before sentence
# new_end_pos=new_end_pos+len(encoded_inp_before["input_ids"])
indices_to_tokens=list(set(span))
indices_to_tokens.sort()
#print(indices_to_tokens)
#print("indices to tokens: ", indices_to_tokens)
if old_dataset==False:
if len(indices_to_tokens)==1:
#print("decoding 1")
decoded="".join(tokenizer.decode(encoded_inp["input_ids"][indices_to_tokens[0]])).strip().replace(" ", "")
else:
#print("decoding 2")
#print("indices_to_tokens: ", indices_to_tokens)
decoded="".join(tokenizer.decode(encoded_inp["input_ids"][indices_to_tokens[0]:indices_to_tokens[-1]+1])).strip().replace(" ", "")
else:
if len(indices_to_tokens)==1:
#print("decoding 1")
decoded="".join(tokenizer.decode(context_input_ids[indices_to_tokens[0]])).strip().replace(" ", "")
else:
#print("decoding 2")
#print("indices_to_tokens: ", indices_to_tokens)
decoded="".join(tokenizer.decode(context_input_ids[indices_to_tokens[0]:indices_to_tokens[-1]+1])).strip().replace(" ", "")
#print("newly_decoded: ", decoded)
#old_dp=" ".join(dp["sentence"]).lower()
#print(old_dp)
#old_target="".join(old_dp[dp["pos"][0]: dp["pos"][1]]).lower()
#old_target="".join(dp["sentence"][dp["pos"][0]:dp["pos"][1]]).lower()
if old_target!=decoded:
print("wrong mapping")
if old_dataset == True:
print("new_start_pos: ", new_start_pos)
print("lenght of before: ", len(encoded_inp_before["input_ids"]))
print("lengh of after: ", len(encoded_inp_after["input_ids"]))
print("after input ids: ", encoded_inp_after["input_ids"])
print("Used from before: ", index_before)
print("Used from after: ", index_after)
print("metonomy sentence length: ", len(encoded_inp["input_ids"]))
print("left for filling: ", context_len)
print("indices to tokens: ", indices_to_tokens)
print("decoded: ", decoded)
print("old target: ", old_target)
print(dp)
#print(old_dp)
#mapping_counter+=1
continue
all_start_positions.append(indices_to_tokens[0])
all_end_positions.append(indices_to_tokens[-1]+1)
all_labels.append(dp["label"])
if old_dataset==False:
all_input_ids.append(encoded_inp["input_ids"])
#print("len input ids: ", len(all_input_ids))
all_attention_masks.append(encoded_inp["attention_mask"])
else:
all_input_ids.append(context_input_ids)
#print("len input ids: ", len(all_input_ids))
all_attention_masks.append(context_attention_masks)
if tokenizer.name_or_path[0] == "b":
if old_dataset==False:
all_token_type_ids.append(encoded_inp["token_type_ids"])
else:
all_token_type_ids.append(context_token_type_ids)
#if tokenizer.name_or_path[0] == "b":
# print(len(all_start_positions))
#print("len end pos: ", len(all_end_positions))
#print("len all labels: ", len(all_labels))
#print("len attention masks: ", len(all_attention_masks[0]))
#print("len start pos: ", len(all_start_positions))
#print("len toke type ids: ", len(all_token_type_ids[0]))
if tokenizer.name_or_path[0] == "r": #if tokenizer is roberta we dont have token_type ids
print("roberta tokenizer")
dataset=TensorDataset(torch.tensor(all_input_ids, dtype=torch.long) ,
torch.tensor(all_attention_masks, dtype=torch.long) ,
torch.tensor(all_start_positions,dtype=torch.long),
torch.tensor(all_end_positions, dtype=torch.long),
torch.tensor(all_labels,dtype=torch.long))
if tokenizer.name_or_path[0] =="b":
print("bert tokenizer")
dataset=TensorDataset(torch.tensor(all_input_ids, dtype=torch.long),
torch.tensor(all_attention_masks, dtype=torch.long),
torch.tensor(all_token_type_ids, dtype=torch.long),
torch.tensor(all_start_positions,dtype=torch.long),
torch.tensor(all_end_positions, dtype=torch.long),
torch.tensor(all_labels,dtype=torch.long))
print("created dataset")
#print(mapping_counter)
return dataset
class EncodedTokenDataset(torch.utils.data.Dataset):
"""
A dataset, containing encoded sentences, integer labels and
the starting and ending position of the target word.
"""
def __init__(self, encodings, starts, ends, labels, instances):
self.encodings = encodings
self.labels = labels
self.starts = starts
self.ends = ends
self.instances = instances
def __getitem__(self, idx):
item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
if self.labels:
item["labels"] = torch.tensor([self.labels[idx]])
item["start_position"] = torch.tensor([self.starts[idx]])
item["end_position"] = torch.tensor([self.ends[idx]])
return item
def __len__(self) -> int:
return len(self.instances)
def salami_tokenizer(tokenizer, input, max_length, masked=False):
bots_token, eots_token = "[bots]", "[eots]"
tokenizer.add_tokens([bots_token, eots_token])
bots_id, eots_id = tokenizer.convert_tokens_to_ids(
[bots_token, eots_token]
) # both are of type int
instances=[]
all_labels=[]
all_input_ids=[]
all_attention_masks=[]
if tokenizer.name_or_path[0] =="b":
all_token_type_ids=[]
for dp in input:
if masked == True:
dp["sentence"][dp["pos"][0] : dp["pos"][1]] == "<mask>" #mask token if wanted
new_sentence = " ".join(dp["sentence"][:dp["pos"][0]]) + bots_token + " " +" ".join(dp["sentence"][dp["pos"][0]:dp["pos"][1]]) + " "+eots_token + " ".join(dp["sentence"][dp["pos"][1]:])
#print(new_sentence)
instances.append(new_sentence)
all_labels.append(dp["label"])
#print("number of instances: ", len(instances))
encoded_inp=tokenizer(instances, padding=True, max_length=max_length, return_tensors="pt")
start_pos=(encoded_inp["input_ids"] == bots_id).nonzero()[:, 1]
end_pos=(encoded_inp["input_ids"] == eots_id).nonzero()[:, 1]-1
#print("start_pos: ", start_pos)
#print("end_pos: ", end_pos)
print(all_labels)
for input_info_name in encoded_inp.keys():
input_information=[]
for i, t in enumerate(encoded_inp[input_info_name]):
t=t.tolist()
t.pop(start_pos[i].item())
t.pop(end_pos[i].item())
input_information.append(t)
encoded_inp[input_info_name] = torch.tensor(input_information)
#start_pos=start_pos.tolist()
#end_pos=end_pos.tolist()
return EncodedTokenDataset(encoded_inp, start_pos, end_pos, all_labels, instances)
def tokenizer_li(input, max_length, masked=False):
tokenizer=BertTokenizer.from_pretrained("bert-base-uncased")
all_input_ids=[]
all_attention_masks=[]
all_token_type_ids=[]
all_start_positions=[]
all_end_positions=[]
all_labels=[]
for dp in input:
if masked == True:
dp["sentence"][dp["pos"][0] : dp["pos"][1]] == "<mask>" #mask token if wanted
new_dp = " ".join(dp["sentence"]).lower()
encoded_inp=tokenizer.encode_plus(new_dp, add_special_tokens=True, max_length=max_length, padding=True) #encode Input with BertTokenizer
tf_tokens = tokenizer.convert_ids_to_tokens(encoded_inp["input_ids"]) #
orig_to_tok_index2=[]
all_tokens2 = ['[CLS]']
for (i, token) in enumerate(dp["sentence"]):
orig_to_tok_index2.append(len(all_tokens2))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
all_tokens2.append(sub_token)
orig_to_tok_index2.append(len(all_tokens2))
if len(tf_tokens)>max_length:
print("too long")
continue
old_target="".join(dp["sentence"][dp["pos"][0]:dp["pos"][1]]).lower()
#print("old taget: ", old_target)
new_target="".join(tf_tokens[orig_to_tok_index2[dp["pos"][0]]:orig_to_tok_index2[dp["pos"][1]]]).replace("##", "").lower()
#print("new old_target: ", new_target)
if old_target != new_target:
print("wrong mapping") #check right mapping of positions
print(old_target)
print(new_target)
continue
assert len(encoded_inp["input_ids"]) == len(encoded_inp["attention_mask"]) #default wise its 1s (in li et al implementation)
#pad the attention masks, input ids, and token type ids with padding_length:
padding_length=max_length-len(encoded_inp["input_ids"])
input_ids = encoded_inp["input_ids"]+([0]*padding_length)
attention_mask = encoded_inp["attention_mask"] + ([0] * padding_length)
token_type_ids = encoded_inp["token_type_ids"] + ([0] * padding_length)
#add the infos to dict
all_input_ids.append(input_ids)
all_attention_masks.append(attention_mask)
all_token_type_ids.append(token_type_ids)
all_start_positions.append(dp["pos"][0]) #do we not have to update the positions?
all_end_positions.append(dp["pos"][1])
all_labels.append(dp["label"])
#turn all the data into a dataset to return
dataset=TensorDataset(torch.tensor(all_input_ids, dtype=torch.long),
torch.tensor(all_attention_masks, dtype=torch.long),
torch.tensor(all_token_type_ids, dtype=torch.long),
torch.tensor(all_start_positions,dtype=torch.long),
torch.tensor(all_end_positions, dtype=torch.long),
torch.tensor(all_labels,dtype=torch.long))
return dataset#encoded_inp, tf_tokens, old_target, new_target #input_ids, attention_mask #, sub_tokens #test , orig_to_tok_index,
def split_dataset(train, name_train, name_dev):
"""Split function (optional) to create random stratified sampled dev set from train dataset. Extracts 10% from
train dataset and keeps distribution of metonymy vs literals
params:
train -> json output (shape of li et al datasets): train dataset
name_train -> str: name of the file where you want to save the train set (without .txt)
name_dev -> str: name of the file to save dev set (without .txt)"""
metonymies=[]
literals=[]
per_of_train=math.ceil(0.1*len(train))
for el in train:
if el["label"] == 0:
literals.append(el)
else:
metonymies.append(el)
amount_m = int(0.1*(len(metonymies)))
amount_l = int(0.1*(len(literals)))
print("removing {0} samples from {1} metonymies and {2} samples from {3} literals".format(amount_m, len(metonymies), amount_l, len(literals)))
dev = []
for i in range(amount_l+1): #+1 because range is exclusive
selected = random.choice(literals) # is random.choice() random enough?
dev.append(selected) #add to dev set...
train.remove(selected) #and remove from train
literals.remove(selected)
for i in range(amount_m+1):
selected=random.choice(metonymies)
dev.append(selected)
train.remove(selected)
metonymies.remove(selected)
assert len(dev) == per_of_train
random.shuffle(dev)
with open(name_train+".json", "w") as outfile:
json.dump(train, outfile)
with open(name_dev+".json", "w") as outfile:
json.dump(dev, outfile)
return train, dev