Skip to content
Snippets Groups Projects
evaluation.py 2.31 KiB
Newer Older
kulcsar's avatar
kulcsar committed
import torch
import tqdm
import numpy as np
import evaluate
import json
import random
import math
from tqdm.auto import tqdm
from transformers import BertTokenizer, RobertaTokenizer, BertModel, RobertaModel, RobertaPreTrainedModel, RobertaConfig,  BertConfig, BertPreTrainedModel, PreTrainedModel, AutoModel, AutoTokenizer
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from transformers import AdamW, get_scheduler
from torch import nn
from torch.nn import CrossEntropyLoss
import matplotlib.pyplot as plt
import os
import pandas as pd
import sklearn

metric=evaluate.load("accuracy")
torch.cuda.empty_cache()


def evaluate_model(model, name,test_dataset, learning_rate, batch_size, imdb=False):
kulcsar's avatar
kulcsar committed
	torch.cuda.empty_cache()
	print("eval swp")
kulcsar's avatar
kulcsar committed
	metric=evaluate.combine(["accuracy", "f1", "precision", "recall"])
	model.eval()

	eval_sampler = SequentialSampler(test_dataset)
	eval_dataloader=DataLoader(test_dataset, sampler=eval_sampler, batch_size=batch_size)

	for batch in eval_dataloader:
		with torch.no_grad():
			if name[0] == "b":
				if imdb==False:
					print("Evaluating Bert model")
					inputs = {'input_ids': batch[0],
							  'attention_mask': batch[1],
							  'token_type_ids': batch[2],
							  'start_position': batch[3],
							  'end_position': batch[4],
							  'labels': batch[5]}
				elif imdb==True:
					print("Evaluating Bert model on imdb")
					inputs={'input_ids':batch[0],
							'attention_mask':batch[1],
							'token_type_ids':batch[2],
							'labels':batch[3]}

			if name[0] == "r":
kulcsar's avatar
kulcsar committed
				print("Evaluating roberta model")
				inputs = {'input_ids': batch[0],
						  'attention_mask': batch[1],
						  'start_position': batch[2],
						  'end_position': batch[3],
						  'labels': batch[4]}

			outputs=model(**inputs)
			prediction=torch.argmax(outputs[1], dim=-1)
			if name[0] =="b":
kulcsar's avatar
kulcsar committed
				metric.add_batch(predictions=prediction, references=batch[5])
			if name[0] =="r":
kulcsar's avatar
kulcsar committed
				metric.add_batch(predictions=prediction, references=batch[4])

	res=metric.compute()
	#print(f"learning rate {learning_rate}: ", res)
 
	return res


def compute_metrics(eval_pred):
	print("eval salami")
kulcsar's avatar
kulcsar committed
	metric=evaluate.combine(["accuracy", "f1", "precision", "recall"])
	logits, labels=eval_pred
	predictions=np.argmax(logits, axis=-1)
	return metric.compute(predictions=predictions, references=labels)