Skip to content
Snippets Groups Projects
Commit 6e7cacdf authored by friebolin's avatar friebolin
Browse files

Update Usage

parent e4fe55c5
No related branches found
No related tags found
No related merge requests found
......@@ -185,31 +185,34 @@ For `<COMMAND>` you must enter one of the commands you find in the list below, w
| Command | Functionality | Arguments |
| ------- | ------------- |-----------|
| <center> **General** </center>|
|**`--architecture`** | Defines which model is used. | Choose `bert-base-uncased` or `roberta` |
|**`--model_type`** | How to initialize the Classification Model | Choose `separate` or `one` |
|**`--mixlayer`**| Specify in which `layer` the interpolation takes place. Only select one layer at a time. | Choose from ${0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}$ |
|**`--tokenizer`**|Which tokenizer to use when preprocessing the datasets.|Choose `swp` for our tokenizer, `li ` for the tokenizer of Li et al. [^6], or `salami` for the tokenizer used by another [student project](https://gitlab.cl.uni-heidelberg.de/salami-hd/salami/-/tree/master/)|
|**`-max`**/**`--max_length`**|Defines the maximum sequence length when tokenizing the sentences.|⚠️ Always choose 256 for *TMix* and 512 for the other models.|
|**`--train_loop`**|Defines which train loop to use.|Choose `swp` for our train loop implementation and `salami` for the one of the [salami](https://gitlab.cl.uni-heidelberg.de/salami-hd/salami) student project.|
|**`-e`**/**`--epochs`**|Number of epochs for training.||
|**`-lr`**/**`--learning_rate`**|Learning rate for training.|`type=float`|
|**`-rs`**/**`--random_seed`**|Random seed for initialization of the model.|Default is $42$.|
|**`-sd`**/**`--save_directory`**|This option specifies the destination directory for the output results of the run.||
|**`-msp`**/**`--model_save_path`**|This option specifies the destination directory for saving the model.|We recommend saving models in [Code/saved_models](Code/saved_models).|
|🔛 **`--architecture`** | Defines which model is used. | Choose `bert-base-uncased` or `roberta` |
|🔛 **`--model_type`** | How to initialize the Classification Model | Choose `separate` or `one` |
|🔛 **`--tokenizer`**|Which tokenizer to use when preprocessing the datasets.|Choose `swp` for our tokenizer, `li ` for the tokenizer of Li et al. [^6], or `salami` for the tokenizer used by another [student project](https://gitlab.cl.uni-heidelberg.de/salami-hd/salami/-/tree/master/)|
|**`-tc`**/**`--tcontext`**|Whether or not to preprocess the training set with context.||
|**`-vc`**/**`--vcontext`**|Whether or not to preprocess the test set with context.||
|🔛 **`-max`**/**`--max_length`**|Defines the maximum sequence length when tokenizing the sentences.|⚠️ Always choose 256 for *TMix* and 512 for the other models.|
|🔛 **`--train_loop`**|Defines which train loop to use.|Choose `swp` for our train loop implementation and `salami` for the one of the [salami](https://gitlab.cl.uni-heidelberg.de/salami-hd/salami) student project.|
|🔛 **`-e`**/**`--epochs`**|Number of epochs for training.||
|🔛 **`-lr`**/**`--learning_rate`**|Learning rate for training.|`type=float`|
|**`-lrtwo`**/**`--second_learning_rate`**| Separate learning rate for multi layer perceptron.|Default is `None`.|
|**`--mlp`**| Whether or not to use two layer MLP as classifier.| |
|🔛 **`-rs`**/**`--random_seed`**|Random seed for initialization of the model.|Default is $42$.|
|🔛 **`-sd`**/**`--save_directory`**|This option specifies the destination directory for the output results of the run.||
|**`-msp`**/**`--model_save_path`**|This option specifies the destination directory for saving the model.|We recommend saving models in [Code/saved_models](Code/saved_models).|
|**`--masking`**|Whether or not to mask the target word.||
|**`-lambda`**/**`--lambda_value`**|Speficies the lambda value for interpolation of *MixUp* and *TMix*|Default is $0.4$, `type=float`|
|🌐 **`--mixlayer`**| Specify in which `layer` the interpolation takes place. Only select one layer at a time. | Choose from ${0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}$ |
|🍸, 🌐 **`-lambda`**/**`--lambda_value`**|Speficies the lambda value for interpolation of *MixUp* and *TMix*|Default is $0.4$, `type=float`|
| <center>| **MixUp** specific </center>||
|**`-mixup`**/**`--mix_up`**| Whether or not to use *MixUp*. If yes, please specify `lambda` and `-mixepoch`| |
|**`-mixepoch`**/**`--mixepoch`**|Specifies the epoch(s) in which to apply *MixUp*.|Default is `None`|
| <center>| **TMix** specific </center>||
|**`--tmix`**| Whether or not to use *TMix*. If yes, please specify `-mixlayer` and `-lambda`| |
|🍸 **`-mixup`**/**`--mix_up`**| Whether or not to use *MixUp*. If yes, please specify `lambda` and `-mixepoch`| |
|🍸 **`-mixepoch`**/**`--mixepoch`**|Specifies the epoch(s) in which to apply *MixUp*.|Default is `None`|
| <center>| **TMix** specific </center>| Default is `None`.|
|🌐 **`--tmix`**| Whether or not to use *TMix*. If yes, please specify `-mixlayer` and `-lambda`| |
| <center>| **Datasets** specific </center>||
|**`-t`**/**`"--train_dataset`**|Defines which dataset is chosen for training.|Choose any of the datasets from [original_datasets](data/original_datasets), [fused_datasets](data/fused_datasets) or [paraphrases](data/paraphrases)|
|**`-v`**/**`--test_dataset`**|Defines which dataset is chosen for testing.|Choose from ["semeval_test.txt"](data/original_datasets/semeval_test.txt), ["companies_test.txt"](data/original_datasets/companies_test.txt) or ["relocar_test.txt"](data/original_datasets/relocar_test.txt)|
|🔛 **`-t`**/**`"--train_dataset`**|Defines which dataset is chosen for training.|Choose any of the datasets from [original_datasets](data/original_datasets), [fused_datasets](data/fused_datasets) or [paraphrases](data/paraphrases)|
|🔛 **`-v`**/**`--test_dataset`**|Defines which dataset is chosen for testing.|Choose from ["semeval_test.txt"](data/original_datasets/semeval_test.txt), ["companies_test.txt"](data/original_datasets/companies_test.txt) or ["relocar_test.txt"](data/original_datasets/relocar_test.txt)|
|**`--imdb`**| Whether or not to use the [IMDB](https://huggingface.co/datasets/imdb) dataset. Note that this is only relevant for validating our *TMix* implementation.||
|**`-b`**/**`--batch_size`**|Defines the batch size for the training process.|Default is $32$.|
|**`-tb`**/**`--test_batch_size`**|Specifies the batch size for the test process.|Default is $16$.|
|🔛 **`-b`**/**`--batch_size`**|Defines the batch size for the training process.|Default is $32$.|
|🔛 **`-tb`**/**`--test_batch_size`**|Specifies the batch size for the test process.|Default is $16$.|
extra: BT and inference
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment