Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
softwareprojektws17
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Steffen Knapp
softwareprojektws17
Commits
9b424993
Commit
9b424993
authored
7 years ago
by
blunck
Browse files
Options
Downloads
Patches
Plain Diff
Added Naive Bayes + Logistic Regression training
parent
3fd00781
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
training_testing.py
+23
-6
23 additions, 6 deletions
training_testing.py
with
23 additions
and
6 deletions
training_testing.py
+
23
−
6
View file @
9b424993
import
corpus
from
random
import
shuffle
import
sent_rating_feature
import
ngram_feature
import
pos_feature
import
numpy
as
np
from
sklearn
import
svm
from
sklearn
import
tree
from
sklearn
import
naive_bayes
from
sklearn
import
linear_model
from
sklearn.model_selection
import
cross_val_score
import
pos_feature
def
create_vector
(
corpus_instance
,
vocabulary
=
None
,
pos_vocabulary
=
None
):
...
...
@@ -28,6 +30,15 @@ def train_multiple(classifiers, train_input, train_labels):
classifier
.
fit
(
train_input
,
train_labels
)
def
score_multiple
(
classifiers
,
train_input
,
train_labels
):
scores
=
[]
for
classifier
in
classifiers
:
accuracy
=
cross_val_score
(
classifier
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
accuracy
'
).
mean
()
f1
=
cross_val_score
(
classifier
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
f1
'
).
mean
()
scores
.
append
(
accuracy
,
f1
)
return
scores
if
__name__
==
'
__main__
'
:
corpus
=
corpus
.
read_corpus
(
"
corpus_shuffled.csv
"
)
...
...
@@ -64,22 +75,30 @@ if __name__ == '__main__':
# ML
# init
svm_clf
=
svm
.
SVC
(
C
=
200.0
)
# large C: smaller-margin hyperplane
svm_clf
=
svm
.
SVC
(
C
=
200.0
,
kernel
=
'
linear
'
)
# large C: smaller-margin hyperplane
tree_clf
=
tree
.
DecisionTreeClassifier
()
nb_clf
=
naive_bayes
.
MultinomialNB
()
lr_clf
=
linear_model
.
LogisticRegression
()
# training
train_multiple
([
svm_clf
,
tree_clf
],
train_inputs
,
train_labels
)
train_multiple
([
svm_clf
,
tree_clf
,
nb_clf
,
lr_clf
],
train_inputs
,
train_labels
)
# validation
svm_acc
=
cross_val_score
(
svm_clf
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
accuracy
'
).
mean
()
tree_acc
=
cross_val_score
(
tree_clf
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
accuracy
'
).
mean
()
nb_acc
=
cross_val_score
(
nb_clf
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
accuracy
'
).
mean
()
lr_acc
=
cross_val_score
(
lr_clf
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
accuracy
'
).
mean
()
svm_f1
=
cross_val_score
(
svm_clf
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
f1
'
).
mean
()
tree_f1
=
cross_val_score
(
tree_clf
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
f1
'
).
mean
()
nb_f1
=
cross_val_score
(
nb_clf
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
f1
'
).
mean
()
lr_f1
=
cross_val_score
(
lr_clf
,
train_inputs
,
train_labels
,
cv
=
5
,
scoring
=
'
f1
'
).
mean
()
print
(
"
\n
--Cross Validation Scores--
"
)
print
(
"
\n
SVM: Accuracy: {}, F1-Score: {}
"
.
format
(
svm_acc
,
svm_f1
))
print
(
"
\n
Tree: Accuracy: {}, F1-Score: {}
"
.
format
(
tree_acc
,
tree_f1
))
print
(
"
\n
N. Bayes: Accuracy: {}, F1-Score: {}
"
.
format
(
nb_acc
,
nb_f1
))
print
(
"
\n
Log. Regression: Accuracy: {}, F1-Score: {}
"
.
format
(
lr_acc
,
lr_f1
))
# testing
# print("\nSVM: Score on test Data:")
...
...
@@ -89,5 +108,3 @@ if __name__ == '__main__':
# print(tree_clf.score(test_inputs, test_labels))
# predictions = svm_classifier.predict(train_inputs)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment