Skip to content
Snippets Groups Projects
Commit 0c351d83 authored by kreuzer's avatar kreuzer
Browse files

Aktualisieren models.py

parent 262987f3
No related branches found
No related tags found
No related merge requests found
......@@ -168,49 +168,56 @@ class ActorOnlySummarisationModel(SummarisationModel):
class SummarisationModelWithCrossEntropyLoss(SummarisationModel):
def _train(self, dataset, epochs=20, batch_size=20, learning_rate=0.001, shuffle=True):
optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate)
loss_fn = nn.BCELoss(reduction='sum')
for _ in range(epochs):
training_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
for batch in training_dataloader:
optimizer.zero_grad()
#def _train(self, dataset, epochs=20, batch_size=20, learning_rate=0.001, shuffle=True):
#
# optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate)
# loss_fn = nn.BCELoss(reduction='sum')
#
# for _ in range(epochs):
#
# training_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
#
# for batch in training_dataloader:
#
# optimizer.zero_grad()
#
# for datapoint in batch:
#
# _, probs = self.__call__(datapoint.document)
#
# loss = loss_fn(probs, datapoint.bin_summary)
#
# loss.backward()
#
# optimizer.step()
for datapoint in batch:
_, probs = self.__call__(datapoint.document)
loss = loss_fn(probs, datapoint.bin_summary)
# eval
def __init__(self, learning_rate=0.001):
loss.backward()
optimizer.step()
super().__init__()
# eval
self.loss_fn = nn.BCELoss(reduction='sum')
self.optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate)
def epoch(self, dataloader, optimizer):
def epoch(self, dataloader):
loss_fn = nn.BCELoss(reduction='sum')
self.train()
for batch in dataloader:
optimizer.zero_grad()
self.optimizer.zero_grad()
for datapoint in batch:
_, probs = self.__call__(datapoint.document)
loss = loss_fn(probs, datapoint.bin_summary)
loss = self.loss_fn(probs, datapoint.bin_summary)
loss.backward()
optimizer.step()
self.optimizer.step()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment