Skip to content
Snippets Groups Projects
Commit 15ca88e2 authored by perov's avatar perov
Browse files

add parameter extraction and averaging

parent 87312bc0
No related branches found
No related tags found
No related merge requests found
......@@ -19,6 +19,11 @@ def get_all_data_from_folder(foldername, datatype="txt"):
return answers
def process_survey_data(headers, answers):
"""
Looks at the tags/questions and adds to every question every response of every participant.
In the end you get a dict with question names as keys and the values are the answers of every participant.
So the first participant will have the index 0 in every value.
"""
survey_group_answers = {}
for responses in answers:
question_num = 0
......@@ -137,7 +142,7 @@ class Proccess_Data(object):
return above_avg_indicies, below_avg_indicies
def compare_ai(self, correct_percentage):
gpt2, opt, gpt4o , gpt2_count, opt_count, gpt4o_count = 0, 0, 0, 0 ,0, 0
gpt2, opt, gpt4o , gpt2_count, opt_count, gpt4o_count = 0, 0, 0, 0, 0, 0
for ai, correctness in zip(self.models, correct_percentage):
if ai == "gpt2":
gpt2 += correctness
......@@ -150,9 +155,30 @@ class Proccess_Data(object):
gpt4o_count += 1
return {"gpt2": round(gpt2 / gpt2_count, 2), "opt": round(opt / opt_count, 2), "gpt4o": round(gpt4o / gpt4o_count, 2)}
def average_parameter(self):
"""Looks at the parameters like coherence, conciseness, creawtivity and clarity of concept and calculates the average."""
pass
def average_parameter(self, parameter, model_name):
"""Looks at the parameters like coherence, conciseness, creativity and clarity of concept and calculates the average."""
count, rate = 0, 0
if model_name != "human":
for question_num, correct_label in enumerate(self.correct_labels):
for keys in self.survey_data.keys():
if parameter in keys and correct_label in keys:
model = self.models[question_num]
if model == model_name:
for rating in self.survey_data[keys]:
if rating:
rate += int(rating)
count += 1
if model_name == "human":
for question_num, correct_label in enumerate(self.correct_labels):
for keys in self.survey_data.keys():
if parameter in keys and correct_label not in keys:
model = self.models[question_num]
for rating in self.survey_data[keys]:
if rating:
rate += int(rating)
count += 1
return round(rate / count, 2)
if __name__ == "__main__":
answers = get_all_data_from_folder("results", "csv")
......@@ -182,8 +208,14 @@ if __name__ == "__main__":
#correct_percentage = [i[2] for i in total_correct.values()] # extracts average percentage of correct answers
#model_results = evaluator.compare_ai(correct_percentage)
test = evaluator.average_parameter()
print(test)
parameters = ["Coherence", "Conciseness", "Creativity", "Clarity of Concept"]
models = ["gpt2", "gpt4o", "opt", "human"]
avg_scores = {
param: {model: evaluator.average_parameter(param, model) for model in models}
for param in parameters
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment