Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
Softwareproject WS2018-19 - Graph Embedding Propagation
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
toyota
Softwareproject WS2018-19 - Graph Embedding Propagation
Commits
4701ee43
Commit
4701ee43
authored
6 years ago
by
nwarslan
Browse files
Options
Downloads
Patches
Plain Diff
added wsd_method 1
parent
3dba9dfb
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scripts/wsd/wsd_method1.py
+21
-20
21 additions, 20 deletions
scripts/wsd/wsd_method1.py
with
21 additions
and
20 deletions
scripts/wsd/wsd_method1
_nadia_confusion
.py
→
scripts/wsd/wsd_method1.py
+
21
−
20
View file @
4701ee43
...
...
@@ -145,7 +145,8 @@ def get_distance(node_combi, dist_dict):
def
map_distances
(
sentence
,
embed_dict
):
"""
this function computes every distance between a word and all senses of other words
returns a dictionary {(id1,id2):distance,...}
"""
dist_dict
=
{}
for
i
in
range
(
len
(
sentence
[:
-
1
])):
...
...
@@ -158,7 +159,7 @@ def map_distances(sentence, embed_dict):
def
find_optimum
(
sentence
,
dist_dict
):
"""
this function finds the optimal sense combination of words in a sentence
"""
optimum
=
[
0
,
0
]
for
n_combi
in
node_combi
(
sentence
):
...
...
@@ -171,13 +172,11 @@ def find_optimum(sentence, dist_dict):
return
optimum
def
map_sense
(
):
def
node_combi
(
sentence
):
"""
IN:[int]
this function computes every possible sense combination of a given sentence
"""
def
node_combi
(
sentence
):
for
combi
in
itertools
.
product
(
*
sentence
):
yield
combi
...
...
@@ -193,10 +192,11 @@ def write_answer_to_file(data, filename):
def
iterate_over
(
senseval_data
,
label_embeddings
,
lemmata_mapping
,
id_mapping
,
sense_key_mapping
):
"""
this function iterates over sentences in senseval data
computes the optimal combination of senses given a sentence
"""
ambig_sents
=
open_mapping
(
senseval_data
)
# split sentence if it contains more than 6 words
for
i
,
sent
in
enumerate
(
ambig_sents
):
if
len
(
sent
)
>=
6
:
ambig_sents
[
i
]
=
sent
[:
6
]
...
...
@@ -204,12 +204,16 @@ def iterate_over(senseval_data, label_embeddings, lemmata_mapping, id_mapping, s
sentences
=
[[[
word
[
'
lemma
'
],
word
[
'
pos
'
],
word
[
'
key
'
]]
for
word
in
sent
]
for
sent
in
ambig_sents
]
solutions
=
[]
for
sentence
in
sentences
:
mapped_sent
=
map_words
(
sentence
,
lemmata_mapping
)[
0
]
lemma_list
=
map_words
(
sentence
,
lemmata_mapping
)[
1
]
# check if compound word were splitted in two
split
=
0
if
len
(
sentence
)
<
len
(
mapped_sent
):
split
=
len
(
mapped_sent
)
-
len
(
sentence
)
# saves the index of an unknown word and removes it from mapped_sent
no_key
=
[]
for
word
in
mapped_sent
:
if
word
[
0
]
==
'
U
'
:
...
...
@@ -217,36 +221,33 @@ def iterate_over(senseval_data, label_embeddings, lemmata_mapping, id_mapping, s
mapped_sent
=
[
word
for
word
in
mapped_sent
if
word
[
0
]
!=
'
U
'
]
# computes label embeddings for every node and saves them in a dict
embed_dict
=
embed
(
mapped_sent
,
label_embeddings
)
# computes distances between nodes and saves them in to a dict
dist_dict
=
map_distances
(
mapped_sent
,
embed_dict
)
# computes the optimal sense combination
optimum
=
find_optimum
(
mapped_sent
,
dist_dict
)
# maps node id's to wn 3 synset id's
optimum
=
[
id_mapping
[
str
(
o
)]
for
o
in
optimum
[
1
]]
# map syn id to sense_key
# map syn
set
id to sense_key
for
i
,
o
in
enumerate
(
optimum
):
key
=
tuple
(
o
+
[
lemma_list
[
i
]])
if
key
in
sense_key_mapping
.
keys
():
optimum
[
i
]
=
sense_key_mapping
[
key
]
else
:
optimum
[
i
]
=
''
# adds the removed unknown words
if
len
(
no_key
)
!=
0
:
for
el
in
no_key
:
optimum
.
insert
(
el
,
''
)
# resplits compound words
resplit
=
0
for
i
,
word
in
enumerate
(
sentence
):
if
split
!=
0
:
if
'
-
'
in
word
[
0
]:
optimum
[
i
]
=
optimum
[
i
]
+
'
'
+
optimum
[
i
+
1
]
optimum
.
remove
(
optimum
[
i
+
1
])
split
-=
1
#print(sentence)
#print(mapped_sent)
#print(optimum)
solution_sent
=
[(
word
[
2
],
optimum
[
k
])
for
k
,
word
in
enumerate
(
sentence
)]
solutions
+=
solution_sent
...
...
@@ -262,7 +263,7 @@ if __name__ == '__main__':
sense_key_mapping
=
open_sense_keys
(
SENSE_KEY_MAPPING
)
solutions
=
iterate_over
(
SENSEVAL_2
,
label_embeddings
,
lemmata_mapping
,
sense_key_mapping
)
solutions
=
iterate_over
(
SENSEVAL_2
,
label_embeddings
,
lemmata_mapping
,
id_mapping
sense_key_mapping
)
write_answer_to_file
(
solutions
,
OUTPUT2
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment