Skip to content
Snippets Groups Projects
Commit feaefe30 authored by Nils W's avatar Nils W
Browse files

19

parent b6c42bd7
No related branches found
No related tags found
No related merge requests found
......@@ -7,9 +7,9 @@
"print_every": 1,
"eval_every": 100,
"save_every": 100,
"max_val_steps": 2000,
"max_val_steps": 3000,
"max_train_seconds": null,
"max_train_steps": 2000,
"max_train_steps": 3000,
"batch_size": 4,
"learning_rate": 1e-05,
"k_samples": 100,
......
File added
File added
File added
File added
File added
This diff is collapsed.
#--------------------------------------
Model: gigaword-L10_2000_then_AMR
Baseline-Model: gigaword-L10_8000
Error: 1
1. Summary/Gold -- Wie nah am Gold-Standard
Model:
Rouge 1: 0.264
Rouge 2: 0.094
Rouge L: 0.24
AMR: 0.374
Baseline:
Rouge 1: 0.295
Rouge 2: 0.095
Rouge L: 0.263
AMR: 0.383
2. Summary/Source -- Macht das Model was es soll?
Model AMR+SMATCH:
F1: 0.565
Precision: 0.442
Recall: 0.857
Baseline AMR+SMATCH:
F1: 0.538
Precision: 0.433
Recall: 0.768
3. Summary/Baseline -- Wie unterschiedlich sind die Outputs vom Model und der Baseline
Rouge 1:
mean: 0.766
median: 0.783
st.dev.: 0.138
variance: 0.019
AMR+SMATCH:
mean: 0.671
median: 0.679
st.dev.: 0.181
variance: 0.033
Levenshtein: (1 char edit = 1 cost)
mean: 25.991
median: 25.0
st.dev.: 15.075
variance: 227.247
Jaccard-Similarity: (Gleiches geteilt Alles)
mean: 0.342
median: 0.286
st.dev.: 0.255
variance: 0.065
Jaccard-Distance: (Ungleiches geteilt Alles)
mean: 0.653
median: 0.706
st.dev.: 0.256
variance: 0.065
4. Summary -- Guete der Fluency (Bleurt)
Model:
mean: -0.607
median: -0.717
st.dev.: 0.421
variance: 0.177
Baseline:
mean: -0.619
median: -0.717
st.dev.: 0.363
variance: 0.132
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment