Skip to content
Snippets Groups Projects
Commit e1dd41de authored by Daniel Povey's avatar Daniel Povey
Browse files

Add file accidentally omitted from commit 86417db, nnet3-latgen-faster-parallel.cc

parent d85a1100
No related branches found
No related tags found
No related merge requests found
// nnet3bin/nnet3-latgen-faster-parallel.cc
// Copyright 2012-2016 Johns Hopkins University (author: Daniel Povey)
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/timer.h"
#include "base/kaldi-common.h"
#include "decoder/decoder-wrappers.h"
#include "fstext/fstext-lib.h"
#include "hmm/transition-model.h"
#include "nnet3/nnet-am-decodable-simple.h"
#include "thread/kaldi-task-sequence.h"
#include "tree/context-dep.h"
#include "util/common-utils.h"
int main(int argc, char *argv[]) {
// note: making this program work with GPUs is as simple as initializing the
// device, but it probably won't make a huge difference in speed for typical
// setups.
try {
using namespace kaldi;
using namespace kaldi::nnet3;
typedef kaldi::int32 int32;
using fst::SymbolTable;
using fst::VectorFst;
using fst::StdArc;
const char *usage =
"Generate lattices using nnet3 neural net model.\n"
"Usage: nnet3-latgen-faster-parallel [options] <nnet-in> <fst-in|fsts-rspecifier> <features-rspecifier>"
" <lattice-wspecifier> [ <words-wspecifier> [<alignments-wspecifier>] ]\n";
ParseOptions po(usage);
Timer timer;
bool allow_partial = false;
TaskSequencerConfig sequencer_config; // has --num-threads option
LatticeFasterDecoderConfig config;
NnetSimpleComputationOptions decodable_opts;
std::string word_syms_filename;
std::string ivector_rspecifier,
online_ivector_rspecifier,
utt2spk_rspecifier;
int32 online_ivector_period = 0;
sequencer_config.Register(&po);
config.Register(&po);
decodable_opts.Register(&po);
po.Register("word-symbol-table", &word_syms_filename,
"Symbol table for words [for debug output]");
po.Register("allow-partial", &allow_partial,
"If true, produce output even if end state was not reached.");
po.Register("ivectors", &ivector_rspecifier, "Rspecifier for "
"iVectors as vectors (i.e. not estimated online); per utterance "
"by default, or per speaker if you provide the --utt2spk option.");
po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier for "
"iVectors estimated online, as matrices. If you supply this,"
" you must set the --online-ivector-period option.");
po.Register("online-ivector-period", &online_ivector_period, "Number of frames "
"between iVectors in matrices supplied to the --online-ivectors "
"option");
po.Read(argc, argv);
if (po.NumArgs() < 4 || po.NumArgs() > 6) {
po.PrintUsage();
exit(1);
}
std::string model_in_filename = po.GetArg(1),
fst_in_str = po.GetArg(2),
feature_rspecifier = po.GetArg(3),
lattice_wspecifier = po.GetArg(4),
words_wspecifier = po.GetOptArg(5),
alignment_wspecifier = po.GetOptArg(6);
TaskSequencer<DecodeUtteranceLatticeFasterClass> sequencer(sequencer_config);
TransitionModel trans_model;
AmNnetSimple am_nnet;
{
bool binary;
Input ki(model_in_filename, &binary);
trans_model.Read(ki.Stream(), binary);
am_nnet.Read(ki.Stream(), binary);
}
bool determinize = config.determinize_lattice;
CompactLatticeWriter compact_lattice_writer;
LatticeWriter lattice_writer;
if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier)
: lattice_writer.Open(lattice_wspecifier)))
KALDI_ERR << "Could not open table for writing lattices: "
<< lattice_wspecifier;
RandomAccessBaseFloatMatrixReader online_ivector_reader(
online_ivector_rspecifier);
RandomAccessBaseFloatVectorReaderMapped ivector_reader(
ivector_rspecifier, utt2spk_rspecifier);
Int32VectorWriter words_writer(words_wspecifier);
Int32VectorWriter alignment_writer(alignment_wspecifier);
fst::SymbolTable *word_syms = NULL;
if (word_syms_filename != "")
if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_filename;
double tot_like = 0.0;
kaldi::int64 frame_count = 0;
int num_success = 0, num_fail = 0;
if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) {
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
// Input FST is just one FST, not a table of FSTs.
VectorFst<StdArc> *decode_fst = fst::ReadFstKaldi(fst_in_str);
{
LatticeFasterDecoder decoder(*decode_fst, config);
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string utt = feature_reader.Key();
const Matrix<BaseFloat> &features (feature_reader.Value());
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_fail++;
continue;
}
const Matrix<BaseFloat> *online_ivectors = NULL;
const Vector<BaseFloat> *ivector = NULL;
if (!ivector_rspecifier.empty()) {
if (!ivector_reader.HasKey(utt)) {
KALDI_WARN << "No iVector available for utterance " << utt;
num_fail++;
continue;
} else {
ivector = &ivector_reader.Value(utt);
}
}
if (!online_ivector_rspecifier.empty()) {
if (!online_ivector_reader.HasKey(utt)) {
KALDI_WARN << "No online iVector available for utterance " << utt;
num_fail++;
continue;
} else {
online_ivectors = &online_ivector_reader.Value(utt);
}
}
LatticeFasterDecoder *decoder =
new LatticeFasterDecoder(*decode_fst, config);
DecodableInterface *nnet_decodable = new
DecodableAmNnetSimpleParallel(
decodable_opts, trans_model, am_nnet,
features, ivector, online_ivectors,
online_ivector_period);
DecodeUtteranceLatticeFasterClass *task =
new DecodeUtteranceLatticeFasterClass(
decoder, nnet_decodable, // takes ownership of these two.
trans_model, word_syms, utt, decodable_opts.acoustic_scale,
determinize, allow_partial, &alignment_writer, &words_writer,
&compact_lattice_writer, &lattice_writer,
&tot_like, &frame_count, &num_success, &num_fail, NULL);
sequencer.Run(task); // takes ownership of "task",
// and will delete it when done.
}
}
sequencer.Wait(); // Waits for all tasks to be done.
delete decode_fst;
} else { // We have different FSTs for different utterances.
SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_in_str);
RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !fst_reader.Done(); fst_reader.Next()) {
std::string utt = fst_reader.Key();
if (!feature_reader.HasKey(utt)) {
KALDI_WARN << "Not decoding utterance " << utt
<< " because no features available.";
num_fail++;
continue;
}
const Matrix<BaseFloat> &features = feature_reader.Value(utt);
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_fail++;
continue;
}
const Matrix<BaseFloat> *online_ivectors = NULL;
const Vector<BaseFloat> *ivector = NULL;
if (!ivector_rspecifier.empty()) {
if (!ivector_reader.HasKey(utt)) {
KALDI_WARN << "No iVector available for utterance " << utt;
num_fail++;
continue;
} else {
ivector = &ivector_reader.Value(utt);
}
}
if (!online_ivector_rspecifier.empty()) {
if (!online_ivector_reader.HasKey(utt)) {
KALDI_WARN << "No online iVector available for utterance " << utt;
num_fail++;
continue;
} else {
online_ivectors = &online_ivector_reader.Value(utt);
}
}
LatticeFasterDecoder *decoder =
new LatticeFasterDecoder(fst_reader.Value(), config);
DecodableInterface *nnet_decodable = new
DecodableAmNnetSimpleParallel(
decodable_opts, trans_model, am_nnet,
features, ivector, online_ivectors,
online_ivector_period);
DecodeUtteranceLatticeFasterClass *task =
new DecodeUtteranceLatticeFasterClass(
decoder, nnet_decodable, // takes ownership of these two.
trans_model, word_syms, utt, decodable_opts.acoustic_scale,
determinize, allow_partial, &alignment_writer, &words_writer,
&compact_lattice_writer, &lattice_writer,
&tot_like, &frame_count, &num_success, &num_fail, NULL);
sequencer.Run(task); // takes ownership of "task",
// and will delete it when done.
}
sequencer.Wait(); // Waits for all tasks to be done.
}
double elapsed = timer.Elapsed();
KALDI_LOG << "Time taken " << elapsed
<< "s: real-time factor assuming 100 frames/sec is "
<< (elapsed * 100.0 / frame_count);
KALDI_LOG << "Done " << num_success << " utterances, failed for "
<< num_fail;
KALDI_LOG << "Overall log-likelihood per frame is "
<< (tot_like / frame_count) << " over "
<< frame_count << " frames.";
delete word_syms;
if (num_success != 0) return 0;
else return 1;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment