Skip to content
Snippets Groups Projects
training_testing.py 5.27 KiB
Newer Older
import corpus
import sent_rating_feature
import ngram_feature
import pos_feature
import punctuation_feature
import surface_patterns
import numpy as np
from sklearn import svm
from sklearn import naive_bayes
from sklearn import linear_model
from sklearn.model_selection import cross_val_score, GridSearchCV
def extract_features(training_set, test_set):

    # vocabularies
blunck's avatar
blunck committed
    n_gram_vocab = ngram_feature.get_vocabulary(train_set, 'REVIEW', (3,3)) # n1==n2!
    pos_bigram_vocab = pos_feature.get_pos_vocabulary(train_set)
blunck's avatar
blunck committed
    surface_bigram_vocab = ngram_feature.get_vocabulary(train_set, 'SURFACE_PATTERNS', (4,4))

    # inputs:
    print("------Feature Extraction------\n")
blunck's avatar
blunck committed
    train_inputs = [create_vector(el, n_gram_vocab, pos_bigram_vocab, surface_bigram_vocab)
                    for el in train_set]  # 1000 vectors
blunck's avatar
blunck committed
    test_inputs = [create_vector(el, n_gram_vocab, pos_bigram_vocab, surface_bigram_vocab)
                   for el in test_set]  # 254 vectors

    # stats
    print("Number of train samples:          {}".format(len(train_inputs)))
blunck's avatar
blunck committed
    print("N_gram vocab size:                {}".format(len(n_gram_vocab)))
    print("POS-Bigram vocab size:            {}".format(len(pos_bigram_vocab)))
    print("SP-Bigram vocab size:             {}".format(len(surface_bigram_vocab)))
    print("Total features per train sample:  {}".format(len(train_inputs[0])))
    print("---> Duration Feature Extraction: {} sec.\n".format(int(time.time()-start_time)))

    return train_inputs, test_inputs
def create_vector(corpus_instance, vocabulary=None, pos_vocabulary=None, surface_vocabulary=None):
    """
    Calls all feature extraction programms and combines
    resulting arrays to a single input vector (for a
    Example for corpus instance: OrderedDict([('LABEL', '0'), ('STARS', '5.0'), etc.
    f1 = ngram_feature.extract(corpus_instance, 'REVIEW', vocabulary)
    f2 = pos_feature.extract(corpus_instance, pos_vocabulary)
    f3 = ngram_feature.extract(corpus_instance, 'SURFACE_PATTERNS', surface_vocabulary)
    f4 = sent_rating_feature.extract(corpus_instance)
    f5 = punctuation_feature.extract(corpus_instance)
    return np.concatenate((f1, f2, f3, f4, f5))
def train_multiple(classifiers, train_inputs, train_labels):
    for classifier in classifiers:
        classifier.fit(train_inputs, train_labels)
def validate_multiple(classifiers, train_inputs, train_labels):
blunck's avatar
blunck committed
    print("\n-------Cross Validation-------")
    for classifier in classifiers:
        accuracy = cross_val_score(classifier, train_inputs, train_labels, cv=3, scoring='accuracy').mean()
        f1 = cross_val_score(classifier, train_inputs, train_labels, cv=3, scoring='f1').mean()
        
        print("\nAccuracy: {}, F1-Score: {}\n".format(accuracy, f1))
def get_best_params(classifier, train_inputs, train_labels):
blunck's avatar
blunck committed

    print("{} \n".format(classifier))

    Cs = [0.001, 0.01, 0.1, 1, 10] # large C: smaller-margin hyperplane
    gammas = [0.001, 0.01, 0.1, 1]
blunck's avatar
blunck committed
    kernels = ['linear', 'rbf', 'poly']

    param_grid = {'C': Cs, 'gamma' : gammas, 'kernel' : kernels}

    grid_search = GridSearchCV(classifier, param_grid, cv=3)
    grid_search.fit(train_inputs, train_labels)

    print("Best parameters: {}".format(grid_search.best_params_))
blunck's avatar
blunck committed
    print("Best score: {}".format(grid_search.best_score_))
    corpus = corpus.read_corpus("corpus_shuffled.csv")
    extended_corpus = surface_patterns.extract_surface_patterns(corpus, 1000)
    train_set = extended_corpus[:1000]
    test_set = extended_corpus[1000:]
    train_inputs, train_labels = [], []
    test_inputs, test_labels = [], []
    re_extract = True # change to False if features are unchanged since previous run
        # inputs (x)
        train_inputs, test_inputs = extract_features(train_set, test_set)
        # labels (y)
        train_labels = np.array([int(el['LABEL']) for el in train_set])  # 1000 labels
        test_labels = np.array([int(el['LABEL']) for el in test_set])  # 254 labels
blunck's avatar
blunck committed
        #pickle.dump([train_inputs, train_labels, test_inputs, test_labels], open("vectors.pickle", "wb"))

    else:
        # load from pickle
        v = pickle.load(open("vectors.pickle", "rb"))
        train_inputs, train_labels = v[0], v[1]
        test_inputs, test_labels = v[2], v[3]


    # Machine Learning
blunck's avatar
blunck committed
    svm_clf = svm.SVC(C=0.1, gamma=0.001, kernel='linear')
    tree_clf = tree.DecisionTreeClassifier()
    nb_clf = naive_bayes.MultinomialNB()
    lr_clf = linear_model.LogisticRegression()
    get_best_params(svm_clf, train_inputs, train_labels)

    #train_multiple([svm_clf, tree_clf, nb_clf, lr_clf], train_inputs, train_labels)
    #print("---> Duration Training: {} sec.\n".format(int(time.time()-start_time)))
blunck's avatar
blunck committed
    validate_multiple([svm_clf, tree_clf, nb_clf, lr_clf], train_inputs, train_labels) #, tree_clf, nb_clf, lr_clf
    print("---> Duration CV: {} sec.".format(int(time.time()-start_time)))

    # testing
    # print("\nSVM: Score on test Data:")
    # print(svm_clf.score(test_inputs, test_labels))
blunck's avatar
blunck committed
    # predictions = svm_classifier.predict(train_inputs)