Newer
Older
self.cnns = nn.ModuleList([nn.Conv1d(200, 50, i+1, padding="valid", groups=1) for i in range(7)])
self.device = torch.device("cuda" if gpu else "cpu")
self.to(self.device)
convolutions = []
for cnn in self.cnns:
convolutions.append(cnn(document.transpose(1,2)).amax(dim=2))
_, (hidden_state, cell_state) = self.document_encoder(encoded_sentences.flip(dims=(0,)))
return hidden_state, cell_state
def encode(self, document):
encoded_sentences = self.encode_sentences(document)
return encoded_sentences, self.encode_document(encoded_sentences)
logits = self.projector(self.sentence_extractor(encoded_sentences, states)[0])
if k < len(probs):
return probs.topk(k).indices, probs # handle doc weniger als 3 sents?
return torch.arange(len(probs)), probs
running_rouge_1 = 0.0
running_rouge_2 = 0.0
running_rouge_l = 0.0
self.eval()
with torch.no_grad():
for datapoint in dataset:
if len(datapoint.raw_document) == 0 or len(datapoint.raw_summary) == 0:
print("Warning in Testing! This datapoint has an empty document or an empty summary")
continue
if self.gpu:
datapoint = datapoint.to(torch.device("cuda"))
top_indices, probs = self.__call__(datapoint.document)
r_1, r_2, r_l = utils.rouge(utils.select_elements(datapoint.raw_document, top_indices), datapoint.raw_summary, verbose=True)
running_rouge_1 += r_1
running_rouge_2 += r_2
running_rouge_l += r_l
epoch_rouge_1 = running_rouge_1 / len(dataset)
epoch_rouge_2 = running_rouge_2 / len(dataset)
epoch_rouge_l = running_rouge_l / len(dataset)
def validation(self, dataset):
return sum(self.test(dataset)) / 3.0
class ActorOnlySummarisationModel(SummarisationModel):
self.optimizer = torch.optim.Adam(self.parameters(), lr=0.001)
def training_epoch(self, dataloader, learning_rate=None): # def scheduler? or global variable?
if learning_rate != None:
for g in self.optimizer.param_groups:
g['lr'] = learning_rate
self.train()
epoch_loss = 0.0
epoch_rouge = 0.0
for batch in dataloader:
self.optimizer.zero_grad()
for datapoint in batch:
# check if dp to gpu is OK
datapoint = datapoint.to(self.device) # device definiert in main_ActorOnly.py
try: # Prevent breakdown for inapt datapoints
# documents with empty content!
if len(datapoint.raw_document) == 0 or len(datapoint.raw_summary) == 0:
print("Warning! This datapoint has an empty document or an empty summary")
continue
_, probs = self.__call__(datapoint.document)
o = datapoint.p_searchspace @ torch.log(probs) + datapoint.n_searchspace @ torch.log(1 - probs)
loss = - datapoint.top_rouge[idx_sample] * o[idx_sample]
epoch_loss += loss.item()
epoch_rouge += datapoint.top_rouge[idx_sample]
except Exception as e:
traceback.print_exception(*sys.exc_info())
continue
self.optimizer.step()
return epoch_loss / len(dataloader.dataset), epoch_rouge / len(dataloader.dataset)
class SummarisationModelWithCrossEntropyLoss(SummarisationModel):
self.optimizer = torch.optim.Adam(self.parameters(), lr=0.001)
def training_epoch(self, dataloader, learning_rate=None):
if learning_rate != None:
for g in self.optimizer.param_groups:
g['lr'] = learning_rate
for datapoint in batch:
_, probs = self.__call__(datapoint.document)
class ActorCriticSummarisationModel(SummarisationModel):
# move to main!, critic wird loss_fn
self.critic = Critic(self) # ?
critic.load_state_dict(critic_wts)
# eventuell move to main
self.optimizer = torch.optim.Adam(self.parameters(), lr= 0.001)
self.loss_fn = nn.MSELoss()
model = copy.deepcopy(model)
#model.eval()
for param in model.parameters():
param.requires_grad = False
self.document_encoder = model.encode_document # encode, encode_document
self.layer_1 = nn.Linear(1200, 600)
self.layer_2 = nn.Linear(600, 600)
self.layer_3 = nn.Linear(600, 1)
W_1 = torch.cat((torch.eye(600), -torch.eye(600)), 1)
W_2 = torch.eye(600)
W_3 = torch.ones(600)
def forward(self, encoded_sentences_1, encoded_sentences_2):
_, document_vec_1 = self.document_encoder(encoded_sentences_1)
_, document_vec_2 = self.document_encoder(encoded_sentences_2)
double_document = torch.cat((torch.squeeze(document_vec_1), torch.squeeze(document_vec_2)), dim=-1)
return torch.tanh(self.steepness*nn.functional.relu(self.layer_3(
nn.functional.relu(self.layer_2(
utils.gaussian(self.layer_1(double_document)))))))
def training_epoch(self, dataloader, learning_rate=None):
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
if learning_rate != None:
for g in self.optimizer.param_groups:
g['lr'] = learning_rate
self.train()
pos_samples= 0.5
epoch_loss = 0.0
for batch in train_dataloader:
self.optimizer.zero_grad()
for datapoint in batch:
r = np.random.random()
if r > pos_samples:
k = np.random.choice(len(datapoint.p_searchspace))
sample = datapoint.sent_vecs.masked_select(datapoint.p_searchspace[k].bool()) # not padded sent embeddngs
score = self.__call__(sample, datapoint.gold_sent_vecs)
loss = self.loss_fn(score, datapoint.top_rouge[k])
else:
if len(datapoint.sent_vecs) >= 3:
narray = np.random.choice(len(datapoint.sent_vecs), 3, replace = False)
narray.sort()
sample = datapoint.sent_vecs[narray]
else:
continue # handle len(sent_vecs) < 3
score = self.__call__(sample, datapoint.gold_sent_vecs)
loss = self.loss_fn(score, utils.rouge(datapoint.raw_document[narray], datapoint.raw_summary))
# rouge score berechnen für negative sample => besser wäre externes berechnen und speichern?
epoch_loss += loss.item()
self.optimizer.step()
return epoch_loss / len(dataloader.dataset)
r = np.random.random()
if r > pos_samples:
k = np.random.choice(len(datapoint.p_searchspace))
sample = datapoint.sent_vecs.masked_select(datapoint.p_searchspace[k].bool()) # not padded sent embeddngs
score = self.__call__(sample, datapoint.gold_sent_vecs)
score_diff = score - datapoint.top_rouge[k] # tensor
else:
if len(datapoint.sent_vecs) >= 3:
narray = np.random.choice(len(datapoint.sent_vecs), 3, replace = False)
narray.sort()
sample = datapoint.sent_vecs[narray]
continue # handle len(sent_vecs) < 3
score = self.__call__(sample, datapoint.gold_sent_vecs)
score_diff = score - utils.rouge(datapoint.raw_document[narray], datapoint.raw_summary)
# rouge score berechnen für negative sample => besser wäre externes berechnen und speichern?
running_diff += abs(score_diff.item())
return running_diff / len(dataset)