Newer
Older
nn.Conv1d(200, 50, 1, padding="valid", groups=1),
nn.Conv1d(200, 50, 2, padding="valid", groups=1),
nn.Conv1d(200, 50, 3, padding="valid", groups=1),
nn.Conv1d(200, 50, 4, padding="valid", groups=1),
nn.Conv1d(200, 50, 5, padding="valid", groups=1),
nn.Conv1d(200, 50, 6, padding="valid", groups=1),
nn.Conv1d(200, 50, 7, padding="valid", groups=1)
convolutions = []
for cnn in self.cnns:
convolutions.append(cnn(document.transpose(1,2)).amax(dim=2))
_, (hidden_state, cell_state) = self.document_encoder(encoded_sentences.flip(dims=(0,)))
return hidden_state, cell_state
def encode(self, document):
encoded_sentences = self.encode_sentences(document)
return encoded_sentences, self.encode_document(encoded_sentences)
logits = self.projector(self.sentence_extractor(encoded_sentences, states)[0])
if k < len(probs):
return probs.topk(k).indices, probs # handle doc weniger als 3 sents?
return torch.arange(len(probs)), probs
running_rouge_1 = 0.0
running_rouge_2 = 0.0
running_rouge_l = 0.0
self.eval()
with torch.no_grad():
for datapoint in dataset:
if len(datapoint.raw_document) == 0 or len(datapoint.raw_summary) == 0:
print("Warning in Testing! This datapoint has an empty document or an empty summary")
continue
top_indices, probs = self.__call__(datapoint.document)
r_1, r_2, r_l = utils.rouge(utils.select_elements(datapoint.raw_document, top_indices), datapoint.raw_summary, verbose=True)
running_rouge_1 += r_1
running_rouge_2 += r_2
running_rouge_l += r_l
epoch_rouge_1 = running_rouge_1 / len(dataset)
epoch_rouge_2 = running_rouge_2 / len(dataset)
epoch_rouge_l = running_rouge_l / len(dataset)
def validation(self, dataset):
return sum(self.test(dataset)) / 3.0
class ActorOnlySummarisationModel(SummarisationModel):
def __init__(self):
super().__init__()
self.optimizer = torch.optim.Adam(self.parameters(), lr=0.001)
def training_epoch(self, dataloader, learning_rate=None): # def scheduler? or global variable?
if learning_rate != None:
for g in self.optimizer.param_groups:
g['lr'] = learning_rate
self.train()
epoch_loss = 0.0
epoch_rouge = 0.0
for batch in dataloader:
self.optimizer.zero_grad()
for datapoint in batch:
try: # Prevent breakdown for inapt datapoints
# documents with empty content!
if len(datapoint.raw_document) == 0 or len(datapoint.raw_summary) == 0:
print("Warning! This datapoint has an empty document or an empty summary")
continue
_, probs = self.__call__(datapoint.document)
o = datapoint.p_searchspace @ torch.log(probs) + datapoint.n_searchspace @ torch.log(1 - probs)
loss = - datapoint.top_rouge[idx_sample] * o[idx_sample]
epoch_loss += loss.item()
epoch_rouge += datapoint.top_rouge[idx_sample]
except Exception as e:
traceback.print_exception(*sys.exc_info())
continue
self.optimizer.step()
return epoch_loss / len(dataloader.dataset), epoch_rouge / len(dataloader.dataset)
class SummarisationModelWithCrossEntropyLoss(SummarisationModel):
self.optimizer = torch.optim.Adam(self.parameters(), lr=0.001)
def training_epoch(self, dataloader, learning_rate=None):
if learning_rate != None:
for g in self.optimizer.param_groups:
g['lr'] = learning_rate
for datapoint in batch:
_, probs = self.__call__(datapoint.document)
class ActorCriticSummarisationModel(SummarisationModel):
# eventuell move to main
self.optimizer = torch.optim.Adam(self.parameters(), lr= 0.001)
self.loss_fn = nn.MSELoss()
model = copy.deepcopy(model)
#model.eval()
for param in model.parameters():
param.requires_grad = False
self.document_encoder = model.encode_document # encode, encode_document
self.layer_1 = nn.Linear(1200, 600)
self.layer_2 = nn.Linear(600, 600)
self.layer_3 = nn.Linear(600, 1)
W_1 = torch.cat((torch.eye(600), -torch.eye(600)), 1)
W_2 = torch.eye(600)
W_3 = torch.ones(600)
def forward(self, encoded_sentences_1, encoded_sentences_2):
_, document_vec_1 = self.document_encoder(encoded_sentences_1)
_, document_vec_2 = self.document_encoder(encoded_sentences_2)
double_document = torch.cat((torch.squeeze(document_vec_1), torch.squeeze(document_vec_2)), dim=-1)
return torch.tanh(self.steepness*nn.functional.relu(self.layer_3(
nn.functional.relu(self.layer_2(
utils.gaussian(self.layer_1(double_document)))))))
def training_epoch(self, dataloader, learning_rate=None):
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
if learning_rate != None:
for g in self.optimizer.param_groups:
g['lr'] = learning_rate
self.train()
pos_samples= 0.5
epoch_loss = 0.0
for batch in train_dataloader:
self.optimizer.zero_grad()
for datapoint in batch:
r = np.random.random()
if r > pos_samples:
k = np.random.choice(len(datapoint.p_searchspace))
sample = datapoint.sent_vecs.masked_select(datapoint.p_searchspace[k].bool()) # not padded sent embeddngs
score = self.__call__(sample, datapoint.gold_sent_vecs)
loss = self.loss_fn(score, datapoint.top_rouge[k])
else:
if len(datapoint.sent_vecs) >= 3:
narray = np.random.choice(len(datapoint.sent_vecs), 3, replace = False)
narray.sort()
sample = datapoint.sent_vecs[narray]
else:
continue # handle len(sent_vecs) < 3
score = self.__call__(sample, datapoint.gold_sent_vecs)
loss = self.loss_fn(score, utils.rouge(datapoint.raw_document[narray], datapoint.raw_summary))
# rouge score berechnen für negative sample => besser wäre externes berechnen und speichern?
epoch_loss += loss.item()
self.optimizer.step()
return epoch_loss / len(dataloader.dataset)
r = np.random.random()
if r > pos_samples:
k = np.random.choice(len(datapoint.p_searchspace))
sample = datapoint.sent_vecs.masked_select(datapoint.p_searchspace[k].bool()) # not padded sent embeddngs
score = self.__call__(sample, datapoint.gold_sent_vecs)
score_diff = score - datapoint.top_rouge[k] # tensor
else:
if len(datapoint.sent_vecs) >= 3:
narray = np.random.choice(len(datapoint.sent_vecs), 3, replace = False)
narray.sort()
sample = datapoint.sent_vecs[narray]
continue # handle len(sent_vecs) < 3
score = self.__call__(sample, datapoint.gold_sent_vecs)
score_diff = score - utils.rouge(datapoint.raw_document[narray], datapoint.raw_summary)
# rouge score berechnen für negative sample => besser wäre externes berechnen und speichern?
running_diff += abs(score_diff.item())
return running_diff / len(dataset)