Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • reichelt/bias-mitigation-ba
1 result
Show changes
Commits on Source (5)
Showing
with 3796 additions and 0 deletions
bias-venv/
.vscode/
.ipynb_checkpoints/
cc.de.300.bin.gz
GloVe-master/
\ No newline at end of file
# Analysing and Mitigating Origin Bias in German Word Embeddings
- Bachelor's thesis
- Author: Aileen Reichelt
- Supervision: Prof. Dr. Katja Markert
- Heidelberg University, Institute of Computational Linguistics
- Submitted January 23, 2024
#!/bin/bash
#
#SBATCH --job-name=weat
#SBATCH --output=weat_output_4.txt
#SBATCH --mem=32G
#SBATCH --partition=compute
#SBATCH --cpus-per-task=32
#SBATCH --mail-user=reichelt@cl.uni-heidelberg.de
#SBATCH --mail-type=ALL
#SBATCH --time=3-00:00:00
# JOB STEPS
source /home/students/reichelt/ba/bias-mitigation-ba/bias-venv/bin/activate
srun python /home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py --attribute italian --vector_location /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_hard_debiased_polish_w2vformat.txt
srun python /home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py --attribute turkish --vector_location /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_hard_debiased_italian_w2vformat.txt
srun python /home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py --attribute polish --vector_location /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_hard_debiased_italian_w2vformat.txt
This diff is collapsed.
"""
A .py version of the WEAT experiments notebook, created so I can
run the script using SBATCH with various parameters. Limited to
German options and does not include W2V, unlike notebook.
Parallelizes the permutation test.
Checks bias in various pre-trained embeddings using the WEAT. Different
embeddings and attribute lists can be chosen.
"""
import argparse
from itertools import combinations, islice
from sklearn.metrics.pairwise import cosine_similarity as cosine
import numpy as np
from gensim.models import KeyedVectors
from concurrent.futures import ProcessPoolExecutor
def get_target_words(version: str) -> dict:
"""
load German target words for origin as per Kurpicz-Briki 2020 (WEAT 5),
or alternatively WEAT 6 target words from Caliskan et al 2017
"""
if version == "reproduction":
pleasant = { # aka career
"executive": [], "management": [], "professional": [], "corporation": [],
"salary": [], "office": [], "business": [], "career": [],
}
unpleasant = { # aka family
"home": [], "parents": [], "children": [], "family": [], "cousins": [],
"marriage": [], "wedding": [], "relatives": [],
}
else:
pleasant = {
"spaß": [],
"liebe": [],
"frieden": [],
"wunderbar": [],
"freude": [],
"lachen": [],
"glück": [],
}
unpleasant = {
"qual": [],
"furchtbar": [],
"schrecklich": [],
"übel": [],
"böse": [],
"krieg": [],
"grausam": [],
"versagen": []
}
return {"pleasant": pleasant, "unpleasant": unpleasant}
def get_attribute_words(version: str) -> dict:
"""Load name lists depending on country. Alternatively load version by Kurpicz-Briki"""
if version == "kurpicz":
german = {
"Peter": [], "Daniel": [], "Hans": [], "Thomas": [], "Andreas": [],
"Martin": [], "Markus": [], "Michael": [], "Maria": [], "Anna": [],
"Ursula": [], "Ruth": [], "Monika": [], "Elisabeth": [], "Verena": [],
"Sandra": []
}
foreign = {
"Ladina": [], "Fatima": [], "Fatma": [], "Alma": [], "Soraya": [],
"Svetlana": [], "Elif": [], "Vesna": [], "Mehmet": [], "Mustafa": [],
"Aleksandar": [], "Mohamed": [], "Ibrahim": [], "Dragan": [],
"Hasan": [], "Mohammad": []
}
return {"german": german, "foreign": foreign}
elif version == "reproduction":
german = { # aka male
"John": [], "Paul": [], "Mike": [], "Kevin": [], "Steve": [],
"Greg": [], "Jeff": [], "Bill": []
}
foreign = { # aka female
"Amy": [], "Joan": [], "Lisa": [], "Sarah": [], "Diana": [],
"Kate": [], "Ann": [], "Donna": []
}
return {"german": german, "foreign": foreign}
else:
german = {
"Katharina": [], "Susanne": [], "Karin": [], "Ulrike": [], "Renate": [],
"Birgit": [], "Bettina": [], "Jutta": [], "Ute": [], "Cornelia": [],
"Katja": [], "Heike": [], "Stefanie": [], "Kerstin": [], "Tanja": [],
"Hans": [], "Carl": [], "Wolfgang": [], "Andreas": [], "Werner": [],
"Christoph": [], "Klaus": [], "Philipp": [], "Joachim": [], "Jürgen": [],
"Dieter": [], "Matthias": [], "Manfred": [], "Sebastian": [], "Rainer": []
}
if version == "turkish":
foreign = {
"Esra": [], "Merve": [], "Fatma": [], "Sibel": [], "Elif": [], "Ayşe": [],
"Emine": [], "Özlem": [], "Zeynep": [], "Hatice": [], "Dilek": [], "Ebru": [],
"Pınar": [], "Hülya": [], "Derya": [], "Mustafa": [], "Murat": [],
"Ahmet": [], "Kemal": [], "Orhan": [], "Hüseyin": [], "Bülent": [],
"Metin": [], "Ömer": [], "Emre": [], "Halil": [], "Erkan": [],
"Uğur": [], "Burak": [], "Volkan": []
}
elif version == "polish":
foreign = {
"Magdalena": [], "Ewa": [], "Zofia": [], "Beata": [], "Katarzyna": [],
"Krystyna": [], "Małgorzata": [], "Jadwiga": [], "Danuta": [],
"Elżbieta": [], "Urszula": [], "Alicja": [], "Aneta": [], "Iwona": [],
"Edyta": [], "Andrzej": [], "Stanisław": [], "Marek": [], "Józef": [],
"Henryk": [], "Krzysztof": [], "Władysław": [], "Tadeusz": [], "Piotr": [],
"Janusz": [], "Tomasz": [], "Wojciech": [], "Jakub": [], "Marcin": [],
"Franciszek": []
}
elif version == "italian":
foreign = {
"Caterina": [], "Francesca": [], "Paola": [], "Giulia": [], "Chiara": [],
"Giovanna": [], "Alessandra": [], "Gioia": [], "Antonella": [],
"Giuseppina": [], "Azzurra": [], "Antonietta": [], "Ambra": [],
"Alessia": [], "Giorgia": [], "Giovanni": [], "Carlo": [],
"Francesco": [], "Giuseppe": [], "Pietro": [], "Luigi": [], "Paolo": [],
"Alessandro": [], "Angelo": [], "Giorgio": [], "Domenico": [],
"Enrico": [], "Stefano": [], "Vincenzo": [], "Matteo": []
}
else:
raise ValueError("Invalid version specified. See --help")
return {"german": german, "foreign": foreign}
def get_embeddings(lookup_dict: dict, embeddings) -> dict():
"""Go through nested seed dicts and look up embedding for each word"""
for category, seeds in lookup_dict.items():
for word, _ in seeds.items():
if word.lower() in embeddings:
seeds[word] = embeddings[word.lower()]
else:
raise KeyError(f"'{word}' not in vocabulary")
lookup_dict[category] = seeds
return lookup_dict
def attribute_association_s(word_vector, target_set1, target_set2):
reshaped_word_vector = np.array(word_vector).reshape(1, -1)
sims1 = [cosine(reshaped_word_vector, np.array(vec).reshape(1, -1)) for vec in list(target_set1.values())]
sims2 = [cosine(reshaped_word_vector, np.array(vec).reshape(1, -1)) for vec in list(target_set2.values())]
return np.mean(sims1) - np.mean(sims2)
def differential_association_s(attr1, attr2, target1, target2):
sum1 = sum([attribute_association_s(vec, target1, target2) for vec in list(attr1.values())])
sum2 = sum([attribute_association_s(vec, target1, target2) for vec in list(attr2.values())])
return sum1 - sum2
def cohens_d_calc(target1, target2, attr1, attr2):
mean1 = np.mean([attribute_association_s(x, attr1, attr2) for x in list(target1.values())])
mean2 = np.mean([attribute_association_s(x, attr1, attr2) for x in list(target2.values())])
join = list(target1.values()) + (list(target2.values()))
joint_association = [attribute_association_s(x, attr1, attr2) for x in join]
stddev = np.std(joint_association)
return (mean1 - mean2) / stddev
def permutations(target1, target2):
join = list(target1.keys()) + list(target2.keys())
combs = list(islice(combinations(join, int(len(join)/2)), 100000))
first_groups = []
second_groups = []
for c in combs:
rest = []
for e in join:
if e not in c:
rest.append(e)
first_groups.append(c)
second_groups.append(rest)
return first_groups, second_groups
def p_value_calc_worker(args):
X_subset, Y_subset, comparison, attr1, attr2 = args
return differential_association_s(X_subset, Y_subset, attr1, attr2) > comparison
def p_value_calc(comparison, X_perms, Y_perms, target1, target2, attr1, attr2):
counter = 0
joint_dict = {**target1, **target2}
with ProcessPoolExecutor() as executor:
args_list = []
for i, _ in enumerate(X_perms):
X_subset = {key: joint_dict[key] for key in X_perms[i]}
Y_subset = {key: joint_dict[key] for key in Y_perms[i]}
args_list.append((X_subset, Y_subset, comparison, attr1, attr2))
results = list(executor.map(p_value_calc_worker, args_list))
counter = sum(results)
return counter
def calculate_WEAT(target_data: dict, attribute_data: dict) -> tuple:
X = attribute_data["german"]
Y = attribute_data["foreign"]
A = target_data["pleasant"]
B = target_data["unpleasant"]
original_diff_association = differential_association_s(X, Y, A, B)
d = cohens_d_calc(X, Y, A, B)
X_i, Y_i = permutations(X, Y)
p_value_count = p_value_calc(original_diff_association, X_i, Y_i, X, Y, A, B)
p = p_value_count/100000
return d, p
if __name__ == "__main__":
np.random.seed(42)
parser = argparse.ArgumentParser(
description="Calculate WEAT score for given attributes and vectors")
parser.add_argument("--attribute", help="'kurpicz', 'turkish', 'polish', 'reproduction'")
parser.add_argument("--vector_location", help="specify a file path to embeddings")
args = parser.parse_args()
print("Loading seed words...")
target_dicts = get_target_words(args.attribute)
attribute_dicts = get_attribute_words(args.attribute)
print("Loading model...")
model = KeyedVectors.load_word2vec_format(args.vector_location, binary=False)
print("Retrieving embeddings...")
target_dicts = get_embeddings(target_dicts, model)
attribute_dicts = get_embeddings(attribute_dicts, model)
print("Calculating WEAT...")
cohens_d, p_value = calculate_WEAT(target_dicts, attribute_dicts)
print(f"WEAT scores for: {args.attribute} test, vectors from {args.vector_location}")
print(f"Cohen's d: {cohens_d:.4f}, p-value: {p_value:.4f}")
print("-----------------------------------------------")
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/wiki.de.vec
Cohen's d: 1.3571, p-value: 0.0109
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: polish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/wiki.de.vec
Cohen's d: 0.2829, p-value: 0.5185
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/wiki.de.vec
Cohen's d: 1.0331, p-value: 0.1082
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/fasttext_hard_debiased_turkish_w2vformat.txt
Cohen's d: 1.1332, p-value: 0.0573
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: polish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/fasttext_hard_debiased_polish_w2vformat.txt
Cohen's d: 0.1786, p-value: 0.5699
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/fasttext_hard_debiased_italian_w2vformat.txt
Cohen's d: 0.5896, p-value: 0.3510
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: polish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/fasttext_hard_debiased_turkish_w2vformat.txt
Cohen's d: 0.2123, p-value: 0.5639
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/fasttext_hard_debiased_turkish_w2vformat.txt
Cohen's d: 0.9480, p-value: 0.1469
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/fasttext_hard_debiased_polish_w2vformat.txt
Cohen's d: 1.3612, p-value: 0.0103
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/fasttext_hard_debiased_polish_w2vformat.txt
Cohen's d: 1.0477, p-value: 0.1018
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/fasttext_hard_debiased_italian_w2vformat.txt
Cohen's d: 1.3299, p-value: 0.0139
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: polish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/fasttext/fasttext_hard_debiased_italian_w2vformat.txt
Cohen's d: 0.1901, p-value: 0.5747
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Traceback (most recent call last):
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 212, in <module>
target_dicts = get_embeddings(target_dicts, model)
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 117, in get_embeddings
raise KeyError(f"'{word}' not in vocabulary")
KeyError: "'scheußlich' not in vocabulary"
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: kurpicz test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/vectors_no_debiasing.txt
Cohen's d: 1.7889, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/vectors_no_debiasing.txt
Cohen's d: 1.8321, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/vectors_no_debiasing.txt
Cohen's d: 1.4650, p-value: 0.0004
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_dd_turkish.txt
Cohen's d: 1.8209, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: polish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_dd_polish.txt
Cohen's d: 1.5567, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_dd_italian.txt
Cohen's d: 1.3057, p-value: 0.0001
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: polish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_dd_turkish.txt
Cohen's d: 1.6582, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_dd_turkish.txt
Cohen's d: 1.4522, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_dd_polish.txt
Cohen's d: 1.7717, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_dd_polish.txt
Cohen's d: 1.3303, p-value: 0.0001
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_dd_italian.txt
Cohen's d: 1.7891, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: polish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_dd_italian.txt
Cohen's d: 1.7005, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: polish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_hard_debiased_turkish_w2vformat.txt
Cohen's d: 1.5315, p-value: 0.0003
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_hard_debiased_turkish_w2vformat.txt
Cohen's d: 1.1688, p-value: 0.0115
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_hard_debiased_polish_w2vformat.txt
Cohen's d: 1.7833, p-value: 0.0000
-----------------------------------------------
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 241
print("-----------------------------------------------)
^
SyntaxError: EOL while scanning string literal
srun: error: node37: task 0: Exited with exit code 1
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 241
print("-----------------------------------------------)
^
SyntaxError: EOL while scanning string literal
srun: error: node37: task 0: Exited with exit code 1
File "/home/students/reichelt/ba/bias-mitigation-ba/WEAT/weat_experiments.py", line 241
print("-----------------------------------------------)
^
SyntaxError: EOL while scanning string literal
srun: error: node37: task 0: Exited with exit code 1
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: italian test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_hard_debiased_polish_w2vformat.txt
Cohen's d: 1.2579, p-value: 0.0046
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: turkish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_hard_debiased_italian_w2vformat.txt
Cohen's d: 1.7934, p-value: 0.0000
-----------------------------------------------
Loading seed words...
Loading model...
Retrieving embeddings...
Calculating WEAT...
WEAT scores for: polish test, vectors from /home/students/reichelt/ba/bias-mitigation-ba/data/embeddings/glove/dd-glove/glove_hard_debiased_italian_w2vformat.txt
Cohen's d: 1.6358, p-value: 0.0000
-----------------------------------------------
"""Compare similarity scores which one set of GloVe embeddings generates
versus another set of GloVe embeddings to determine whether the two sets
of embeddings are more or less the same."""
import pandas as pd
from gensim.models import KeyedVectors
from scipy.stats import spearmanr
from scipy.spatial.distance import cosine
stanford_path = "/workspace/students/reichelt/ba_data/embeddings/glove/glove.6B.300d_w2vformat.txt"
dd_glove_path = "/workspace/students/reichelt/ba_data/embeddings/glove/dd-glove/english_vectors_no_debiasing.txt"
stanford_model = KeyedVectors.load_word2vec_format(stanford_path, binary=False)
stanford_model.init_sims(replace=True)
dd_glove_model = KeyedVectors.load_word2vec_format(dd_glove_path, binary=False)
stanford_model.init_sims(replace=True)
ws353_data = pd.read_csv("/home/students/reichelt/ba/bias-mitigation-ba/WordSim353/data/original_finkelstein/combined.csv")
def calculate_embedding_similarity(row, embedding):
if embedding=="stanford":
model = stanford_model
elif embedding=="dd":
model = dd_glove_model
else:
raise ValueError
word_1 = row["Word 1"].lower()
word_2 = row["Word 2"].lower()
if word_1 in model:
embd_1 = model[word_1]
else:
print(f"{word_1} not in vocab. returning similarity 0.")
return 0.0
if word_2 in model:
embd_2 = model[word_2]
else:
print(f"{word_2} not in vocab. returning similarity 0.")
return 0.0
return 1 - cosine(embd_1, embd_2)
def calculate_stanford(row):
word_1 = row["Word 1"].lower()
word_2 = row["Word 2"].lower()
if word_1 in stanford_model:
embd_1 = stanford_model[word_1]
else:
print(f"{word_1} not in vocab. returning similarity 0.")
return 0.0
if word_2 in stanford_model:
embd_2 = stanford_model[word_2]
else:
print(f"{word_2} not in vocab. returning similarity 0.")
return 0.0
return 1 - cosine(embd_1, embd_2)
def calculate_dd_glove(row):
word_1 = row["Word 1"].lower()
word_2 = row["Word 2"].lower()
if word_1 in dd_glove_model:
embd_1 = dd_glove_model[word_1]
else:
print(f"{word_1} not in vocab. returning similarity 0.")
return 0.0
if word_2 in dd_glove_model:
embd_2 = dd_glove_model[word_2]
else:
print(f"{word_2} not in vocab. returning similarity 0.")
return 0.0
return 1 - cosine(embd_1, embd_2)
ws353_data["Stanford Score"] = ws353_data.apply(calculate_stanford, axis=1)
ws353_data["DD-GloVe Score"] = ws353_data.apply(calculate_dd_glove, axis=1)
rho, p = spearmanr(
ws353_data["Stanford Score"], ws353_data["DD-GloVe Score"],
nan_policy="raise"
)
print("rho: " + str(rho))
print("p: " + str(p))
WordSim353/data/distribution1.png

18.7 KiB

WordSim353/data/distribution2.png

27.3 KiB

WordSim353/data/distribution3.png

30.7 KiB

#WORD1 WORD2 Value POS1 POS2
Absage ablehnen 3.5 n v
Absage Stellenanzeige 1.88 n n
Affe Gepäckkontrolle 0.13 n n
Affe Makake 4 n n
Afrika historisch 1 n a
Agentur Irrtum 0 n n
Airbag Kopfairbag 3.88 n n
analysieren Analyse 3.88 v n
Ansehen Schaden 0.88 n n
Arbeitssuchender Bewerbung 2.75 n n
aufklären erklären 2.5 v v
Aufpreis Grundpreis 3.13 n n
Aufstieg Erfolg 3.25 n n
aufzeichnen schreiben 2.75 v v
Aussage Auftritt 1.38 n n
Aussage Rede 2.38 n n
Aussage sagen 3.38 n v
Aussterben bedrohen 2.13 n v
Auto fahren 3.5 n v
Bayern Bayerisch 4 n a
Bayern Deutschland 3.5 n n
Bayern weißblau 2.75 n a
Beamte Amt 3.63 n n
beginnen dauern 2.38 v v
begründen ausgehen 0.88 v v
Behörde Vorschrift 2.75 n n
beinhalten umfassen 3.25 v v
Benedetto Benedikt 3.63 n n
Benziner Dieselversion 3 n n
Berlin Berlin-Kreuzberg 3.38 n n
Berufstätigkeit Erfolg 2.13 n n
beschleunigen übertreiben 1.13 v v
beschuldigen Mitschuld 2.5 v n
Besucher bekommen 1.38 n v
Bewerbung Job 2.38 n n
Bild ähneln 1.38 n v
Bild Grafik 3.13 n n
Bild Röntgenaufnahme 3 n n
Bild Symbol 2.13 n n
Bild visuell 3 n a
Böse Gott 2 n n
Botschaft sichtbar 0.25 n a
Büro Schreibtisch 3 n n
Demut demütig 4 n a
demütig selbstbewusst 1.88 a a
Design Optik 2.63 n n
Designer Eleganz 2.63 n n
deutsch Deutscher 3.88 a n
Deutscher Bundesbürger 3.5 n n
Deutschland Europa 3.25 n n
Ding Gegenstand 4 n n
Doktorandin Abteilung 1.88 n n
Doktorandin Dissertationsthema 2.63 n n
Drehmoment drehfreudig 1.75 n a
dringend rasch 2.38 a a
Durchsicht sehen 2.75 n v
einfach komplex 2.75 a a
Einkommen Gehaltsunterschied 2 n n
Einrichtung Interior 3.5 n n
Einsamkeit allein 3.5 n a
einsteigen aussteigen 2.75 v v
Eleganz klobig 1.38 n a
Eltern Vater 3.5 n n
entgehen bewundern 0.13 v v
entwickeln Entwicklungschef 2.63 v n
Erfolg erfolgreich 4 n a
Erfolg Maßstab 1.25 n n
erforschen herausfinden 3.13 v v
Erhalt bedroht 1 n a
erkennen sehen 3 v v
erklären begründen 2.5 v v
erklären machen 0.5 v v
ernst ironisch 2 a a
erst Ursprungsort 1.38 a n
Erwachsener Geist 0 n n
Erwachsener Kinder 2.63 n n
erwarten klären 0 v v
fahren Automobil 3 v n
filtern herausfiltern 3.63 v v
filtern selektieren 3.38 v v
finden herausfinden 3 v v
Fisch schwimmen 3.38 n v
Flaschenöffner Küchenwerkzeug 3.63 n n
fokussieren Aufmerksamkeit 2.63 v n
folgen sortieren 0.25 v v
Form Farbe 2.13 n n
formulieren Formulierung 3.88 v n
Formulierung Stiftung 0.13 n n
Forscher Wissenschaftler 3.88 n n
Frage Antwort 3.25 n n
Franzose Deutscher 2.38 n n
Frau Familie 2.75 n n
Frau Mann 3.25 n n
Frühlingssonne kitzeln 1.25 n v
Frust frustrieren 3.88 n v
Frust Leidensgenosse 1.88 n n
Frust Rache 1.88 n n
geben nehmen 3.25 v v
Gefühl Frau 1.75 n n
Gegenwind kritisieren 0.5 n v
Gehege Zoo 2.63 n n
Gehirn Kortex 3.25 n n
Gehirn verstehen 2.13 n v
gemeinsam leben 1 a v
Generation Jugendlicher 2.5 n n
geografisch praktisch 0.13 a a
Gepäckkontrolle Flughafen 3.13 n n
Gepäcknetz Staumöglichkeit 2.25 n n
Geschirrdurcheinander Menschenleben 0.5 n n
Geschlecht Mann 3 n n
Gewalt Frieden 2.63 n n
Gewalt Kämpfer 2.63 n n
Gewicht Karriere 0.38 n n
Glaube natürlich 0.5 n a
Glück glücklich 3.88 n a
Gorilla Schlange 1.25 n n
großzügig schrumpfen 0.5 a v
gründen Arbeitsgruppe 0.75 v n
Grundlagenforschung verstehen 1.63 n v
Hand Erwachsener 1.38 n n
Hand Mensch 2.75 n n
heimisch Urwaldhaus 1 a n
helfen unterstützen 3.38 v v
herausstreichen öffentlich 0.5 v a
Herkunft Geschlecht 1.38 n n
Hintergrund Fassade 2 n n
Hirn Gehirn 3.88 n n
Hirnsignal Neuronenaktivität 3.5 n n
Hoffnung Resignation 2.75 n n
Honorarbasis bezahlen 3 n v
Hunderttausend Menge 3 n n
Hunger Armut 2.88 n n
Inaugurationsmesse Premiere 2.13 n n
informieren erfahren 2.63 v v
Innenspiegel Auto 3.13 n n
Internetseite herunterladen 3.25 n v
italienisch vergehen 0 a v
Jäger Wald 2.75 n n
Kaffeetasse parallel 0 n a
Kaffeetasse Tasse 3.75 n n
Kamera TV-Kamera 3.75 n n
kämpfen idyllisch 0.13 v a
kämpfen Veterinär 0.38 v n
Karriere hinaufklettern 2 n v
Karriere Risiko 1 n n
Kind Familie 3.38 n n
Kompaktvan Modell 2.5 n n
Kopfairbag Seitenairbag 3.25 n n
Krankheit reißen 0.25 n v
Krebserkennung Röntgenaufnahme 2 n n
kühl hübsch 0.38 a a
Kulturwissenschaft Grafiker 0.63 n n
lachen leben 1.63 v v
lassen prägen 0.25 v v
laufen bleiben 1.25 v v
leben hellen 0.13 v v
leben Tod 3.25 v n
Lebensbedürfnis ansiedeln 0.38 n v
legen Tisch 1.13 v n
lernen gleichzeitig 0 v a
Lied singen 3.38 n v
Linguistik Wissenschaft 3.5 n n
Luft Leben 2.75 n n
Lupe suchen 2 n v
lustig Witz 3.25 a n
machen anfertigen 3.63 v v
machen ausüben 2.5 v v
Macht Reich 2.5 n n
Mai Januar 2.88 n n
Mann Geschäftspartner 1.5 n n
männlich Weiblich 3.13 a a
Marktl Bayern 2.25 n n
Mehrarbeit Workaholic 2 n n
Meinung Überzeugung 3.13 n n
Mercedes Premium-Hersteller 2.63 n n
Minister Außenminister 3.38 n n
Minister Ministerpräsident 3.38 n n
Minister Politiker 3.25 n n
mitteilen Nachricht 3 v n
moderat extra 1.25 a a
modern sportlich 1.25 a a
momentan kommend 1.38 a v
Monate alt 2.25 n a
Montag November 2.38 n n
Motor Hubraum 2.75 n n
nachgehen untersuchen 2.75 v v
Natur künstlich 2.63 n a
Niedersachsen Landesverband 1.63 n n
niederschmetternd positiv 1.63 a a
Objekt Gegenstand 3.88 n n
objektiv subjektiv 3.13 a a
pädagogisch weitläufig 0.5 a a
Papst Kirche 3.38 n n
parallel linear 1.75 a a
Pass Reiseschutzpass 2.75 n n
Petersdom Inaugurationsmesse 2.63 n n
Pinguin baden 1.5 n v
plätschern Wasser 2.88 v n
Platz aufgebläht 0.13 n a
Platz Petersplatz 3.13 n n
Pontifikat Papst 3.38 n n
Post Portokosten 3 n n
Premium-Hersteller Opel 1.63 n n
Premium-Hersteller VW 2 n n
Problem Schwierigkeit 3.25 n n
Projekt Aktion 2 n n
Prozentzeichen Symbol 3.38 n n
Prüfung Zeugnis 2.5 n n
Punktverlust Platz 1.13 n n
Ratzinger Papst 3.38 n n
Relevanz relevant 3.88 n a
riesig üppig 2.63 a a
rot-weiß weißblau 2.75 a a
sachlich Seriosität 2.13 a n
sagen erklären 2.13 v v
sagen mitteilen 3.13 v v
Sandwich-Konzept Sicherheit 0.5 n n
schauen sehen 3.75 v v
Schleusung Betrugshandlung 2.13 n n
schließen Überlegung 0.88 v n
Schrank Küchenschrank 3.38 n n
Schwabe sparen 2.75 n v
Schwabe Stuttgarter 3.38 n n
Seitenansicht A-Säule 0.88 n n
Selbstinszenierung Beziehungsarbeit 0.5 n n
serienmäßig extra 2.13 a a
Sicherheit Frontalkollision 1.63 n n
Sicherheit klobig 0.25 n a
Sohn aussteigen 0 n v
Sohn Vater 3.38 n n
Spitze allein 1.13 n a
Spitze hoch 2.25 n a
sportlich Interior 0 a n
sportlich teuer 0.38 a a
stark Gehaltsunterschied 0.13 a n
stark Kämpfer 1.88 a n
Steckdose komplex 0.13 n a
Steckdose Stern 0.13 n n
Stellenangebot sehen 0.38 n v
Stellenangebot Wochenzeitung 2.25 n n
Stellenanzeige Bewerbungsgespräch 2.25 n n
Stellenanzeige rasch 0.5 n a
Stoiber drehfreudig 0.25 n a
Stoiber Ministerpräsident 3.13 n n
Studie Dissertationsthema 1.88 n n
Studie Ergebnis 2.75 n n
Studierende Abteilung 1.63 n n
Studierende Note 2.38 n n
Studium arbeiten 2.63 n v
Studium Beruf 3 n n
Studium Deutscher 0.25 n n
Studium Europa 0.5 n n
Studium Gegenstand 0.88 n n
Studium studieren 4 n v
suchen Bundesbürger 0 v n
suchen finden 3 v v
Suchmaschinenbetreiber Eleganz 0.25 n n
Suchmaschinenbetreiber Linkstatistik 1.75 n n
Suchstrategie Optik 0.25 n n
Suchstrategie suchen 3.5 n v
summieren selbstbewusst 0.13 v a
summieren teuer 0.88 v a
Tag demütig 0.25 n a
Tag Donnerstag 3.38 n n
Tag Leben 1.5 n n
Tag Schreibtisch 0 n n
Tag sichtbar 0.63 n a
Tag Stunde 2.75 n n
Tastatur Gott 0 n n
Tastatur Suche 0.63 n n
Tätigkeit Arbeit 3 n n
Tätigkeit visuell 0.13 n a
teuer kostspielig 3.88 a a
teuer Symbol 0.25 a n
Tier Natur 2.63 n n
Tier Röntgenaufnahme 0.25 n n
Tierpark Giraffe 3 n n
Tierpark Grafik 0.5 n n
Tod ähneln 0 n a
Tod Beerdigung 3.25 n n
Topmanagement Job 2.5 n n
Topmanagement Unternehmen 2.75 n n
Traurigkeit bekommen 0.13 n v
Traurigkeit Heimgang 1.13 n n
überzeugen Mitschuld 0.5 v n
überzeugen zeigen 1.5 v v
Überzeugung übertreiben 0.63 n v
Überzeugung Zweifel 2.63 n n
Umfrage Erfolg 0.13 n n
Umfrage Quartalsumfrage 2.88 n n
umklappen Berlin-Kreuzberg 0 v n
umklappen flachlegen 1.63 v v
Unternehmen Dieselversion 0 n n
Unternehmen Firma 3.63 n n
untersuchen Benedikt 0 v n
untersuchen suchen 2.5 v v
Untersuchungsausschuss aussagen 1.88 n v
Untersuchungsausschuss umfassen 0.38 n v
Van Sports-Tourer 2.38 n n
Van Vorschrift 0.25 n n
Vatikan ausgehen 0.13 n v
Vatikan Katholik 3.25 n n
veranstalten betreuen 1.38 v v
veranstalten dauern 0.75 v v
verantwortlich Amt 2.25 a n
verantwortlich zuständig 3.63 a a
vergangen damalig 3.25 a a
vergangen weißblau 0 a a
Vergangenheit alte 2 n a
Vergangenheit Deutschland 1 n n
verhindert Bayerisch 0 a a
verhindert Beihilfe 0.75 a n
verkaufen bezahlen 2.5 v v
verkaufen fahren 0.13 v v
Vernehmung bedrohen 0.75 n v
Vernehmung vernommen 3.63 n v
versäumen sagen 0.13 v v
versäumen überprüfen 0.13 v v
verschicken Post 3 v n
verschicken Rede 0.25 v n
versichern Auftritt 0.13 v n
versichern bedauern 0.5 v v
viel groß 2 a a
viel schreiben 0.38 a v
Volierenzelt Erfolg 0 n n
Volierenzelt Käfig 2.38 n n
vorankommen Entwicklung 2.5 v n
vorankommen Grundpreis 0.25 v n
weit Bewerbung 0 a n
weit erklären 0.25 a v
weit nahe 3.13 a a
weit wegrennen 1.5 a v
Welle Schaden 1 n n
Welle Surfer 3.13 n n
Widerspruch Analyse 1.13 n n
Widerspruch Gebiet 0 n n
Wien deutschsprachig 3 n a
Wien Kopfairbag 0 n n
Wirtschaftsprofessor Irrtum 0.38 n n
Wirtschaftsprofessor Professor 3.63 n n
Wirtschaftsuniversität Abteilung 1.75 n n
Wirtschaftsuniversität historisch 0.63 n a
Witz Gepäckkontrolle 0.25 n n
Witz Joke 4 n n
Witz Kopf 1.13 n n
Witz Makake 0.13 n n
Zebra Stellenanzeige 0 n n
Zebra Tier 3.25 n n
Zielstrebigkeit ablehnen 0.25 n v
Zielstrebigkeit Erfolg 2.63 n n
#WORD1 WORD2 Value POS1 POS2
Absage ablehnen 3.5 n v
Absage Stellenanzeige 1.88 n n
Afrika historisch 1 n a
Agentur Irrtum 0 n n
analysieren Analyse 3.88 v n
Ansehen Schaden 0.88 n n
aufklären erklären 2.5 v v
Aufpreis Grundpreis 3.13 n n
Aufstieg Erfolg 3.25 n n
aufzeichnen schreiben 2.75 v v
Aussage Auftritt 1.38 n n
Aussage Rede 2.38 n n
Aussage sagen 3.38 n v
Aussterben bedrohen 2.13 n v
Auto fahren 3.5 n v
Bayern Bayerisch 4 n a
Bayern Deutschland 3.5 n n
Beamte Amt 3.63 n n
beginnen dauern 2.38 v v
begründen ausgehen 0.88 v v
Behörde Vorschrift 2.75 n n
beinhalten umfassen 3.25 v v
Benedetto Benedikt 3.63 n n
Berufstätigkeit Erfolg 2.13 n n
beschleunigen übertreiben 1.13 v v
beschuldigen Mitschuld 2.5 v n
Besucher bekommen 1.38 n v
Bewerbung Job 2.38 n n
Bild ähneln 1.38 n v
Bild Grafik 3.13 n n
Bild Röntgenaufnahme 3 n n
Bild Symbol 2.13 n n
Bild visuell 3 n a
Böse Gott 2 n n
Botschaft sichtbar 0.25 n a
Büro Schreibtisch 3 n n
Demut demütig 4 n a
demütig selbstbewusst 1.88 a a
Design Optik 2.63 n n
Designer Eleganz 2.63 n n
deutsch Deutscher 3.88 a n
Deutscher Bundesbürger 3.5 n n
Deutschland Europa 3.25 n n
Ding Gegenstand 4 n n
Doktorandin Abteilung 1.88 n n
Doktorandin Dissertationsthema 2.63 n n
dringend rasch 2.38 a a
Durchsicht sehen 2.75 n v
einfach komplex 2.75 a a
Einrichtung Interior 3.5 n n
Einsamkeit allein 3.5 n a
einsteigen aussteigen 2.75 v v
Eleganz klobig 1.38 n a
Eltern Vater 3.5 n n
entgehen bewundern 0.13 v v
Erfolg erfolgreich 4 n a
Erfolg Maßstab 1.25 n n
erforschen herausfinden 3.13 v v
Erhalt bedroht 1 n a
erkennen sehen 3 v v
erklären begründen 2.5 v v
erklären machen 0.5 v v
ernst ironisch 2 a a
erst Ursprungsort 1.38 a n
Erwachsener Geist 0 n n
Erwachsener Kinder 2.63 n n
erwarten klären 0 v v
fahren Automobil 3 v n
filtern herausfiltern 3.63 v v
filtern selektieren 3.38 v v
finden herausfinden 3 v v
Fisch schwimmen 3.38 n v
fokussieren Aufmerksamkeit 2.63 v n
folgen sortieren 0.25 v v
Form Farbe 2.13 n n
formulieren Formulierung 3.88 v n
Formulierung Stiftung 0.13 n n
Forscher Wissenschaftler 3.88 n n
Frage Antwort 3.25 n n
Franzose Deutscher 2.38 n n
Frau Familie 2.75 n n
Frau Mann 3.25 n n
Frust Rache 1.88 n n
geben nehmen 3.25 v v
Gefühl Frau 1.75 n n
Gegenwind kritisieren 0.5 n v
Gehege Zoo 2.63 n n
Gehirn Kortex 3.25 n n
Gehirn verstehen 2.13 n v
gemeinsam leben 1 a v
Generation Jugendlicher 2.5 n n
geografisch praktisch 0.13 a a
Geschlecht Mann 3 n n
Gewalt Frieden 2.63 n n
Gewalt Kämpfer 2.63 n n
Gewicht Karriere 0.38 n n
Glaube natürlich 0.5 n a
Glück glücklich 3.88 n a
Gorilla Schlange 1.25 n n
großzügig schrumpfen 0.5 a v
gründen Arbeitsgruppe 0.75 v n
Grundlagenforschung verstehen 1.63 n v
Hand Erwachsener 1.38 n n
Hand Mensch 2.75 n n
helfen unterstützen 3.38 v v
Herkunft Geschlecht 1.38 n n
Hintergrund Fassade 2 n n
Hirn Gehirn 3.88 n n
Hoffnung Resignation 2.75 n n
Honorarbasis bezahlen 3 n v
Hunderttausend Menge 3 n n
Hunger Armut 2.88 n n
informieren erfahren 2.63 v v
Innenspiegel Auto 3.13 n n
Internetseite herunterladen 3.25 n v
italienisch vergehen 0 a v
Jäger Wald 2.75 n n
kämpfen idyllisch 0.13 v a
kämpfen Veterinär 0.38 v n
Karriere Risiko 1 n n
Kind Familie 3.38 n n
Kompaktvan Modell 2.5 n n
Krankheit reißen 0.25 n v
kühl hübsch 0.38 a a
Kulturwissenschaft Grafiker 0.63 n n
lachen leben 1.63 v v
lassen prägen 0.25 v v
laufen bleiben 1.25 v v
leben hellen 0.13 v v
leben Tod 3.25 v n
legen Tisch 1.13 v n
lernen gleichzeitig 0 v a
Lied singen 3.38 n v
Linguistik Wissenschaft 3.5 n n
Luft Leben 2.75 n n
Lupe suchen 2 n v
lustig Witz 3.25 a n
machen anfertigen 3.63 v v
machen ausüben 2.5 v v
Macht Reich 2.5 n n
Mai Januar 2.88 n n
Mann Geschäftspartner 1.5 n n
männlich Weiblich 3.13 a a
Marktl Bayern 2.25 n n
Mehrarbeit Workaholic 2 n n
Meinung Überzeugung 3.13 n n
Minister Außenminister 3.38 n n
Minister Ministerpräsident 3.38 n n
Minister Politiker 3.25 n n
mitteilen Nachricht 3 v n
moderat extra 1.25 a a
modern sportlich 1.25 a a
momentan kommend 1.38 a v
Monate alt 2.25 n a
Montag November 2.38 n n
Motor Hubraum 2.75 n n
nachgehen untersuchen 2.75 v v
Natur künstlich 2.63 n a
Niedersachsen Landesverband 1.63 n n
Objekt Gegenstand 3.88 n n
objektiv subjektiv 3.13 a a
pädagogisch weitläufig 0.5 a a
Papst Kirche 3.38 n n
parallel linear 1.75 a a
Pinguin baden 1.5 n v
Platz aufgebläht 0.13 n a
Platz Petersplatz 3.13 n n
Pontifikat Papst 3.38 n n
Problem Schwierigkeit 3.25 n n
Projekt Aktion 2 n n
Prüfung Zeugnis 2.5 n n
Punktverlust Platz 1.13 n n
Ratzinger Papst 3.38 n n
Relevanz relevant 3.88 n a
riesig üppig 2.63 a a
sachlich Seriosität 2.13 a n
sagen erklären 2.13 v v
sagen mitteilen 3.13 v v
schauen sehen 3.75 v v
schließen Überlegung 0.88 v n
Schwabe sparen 2.75 n v
Schwabe Stuttgarter 3.38 n n
serienmäßig extra 2.13 a a
Sicherheit klobig 0.25 n a
Sohn aussteigen 0 n v
Sohn Vater 3.38 n n
Spitze allein 1.13 n a
Spitze hoch 2.25 n a
sportlich Interior 0 a n
sportlich teuer 0.38 a a
stark Kämpfer 1.88 a n
Steckdose komplex 0.13 n a
Steckdose Stern 0.13 n n
Stellenangebot sehen 0.38 n v
Stellenangebot Wochenzeitung 2.25 n n
Stoiber Ministerpräsident 3.13 n n
Studie Dissertationsthema 1.88 n n
Studie Ergebnis 2.75 n n
Studierende Abteilung 1.63 n n
Studierende Note 2.38 n n
Studium arbeiten 2.63 n v
Studium Beruf 3 n n
Studium Deutscher 0.25 n n
Studium Europa 0.5 n n
Studium Gegenstand 0.88 n n
Studium studieren 4 n v
suchen Bundesbürger 0 v n
suchen finden 3 v v
summieren selbstbewusst 0.13 v a
summieren teuer 0.88 v a
Tag demütig 0.25 n a
Tag Donnerstag 3.38 n n
Tag Leben 1.5 n n
Tag Schreibtisch 0 n n
Tag sichtbar 0.63 n a
Tag Stunde 2.75 n n
Tastatur Gott 0 n n
Tastatur Suche 0.63 n n
Tätigkeit Arbeit 3 n n
Tätigkeit visuell 0.13 n a
teuer kostspielig 3.88 a a
teuer Symbol 0.25 a n
Tier Natur 2.63 n n
Tier Röntgenaufnahme 0.25 n n
Tierpark Giraffe 3 n n
Tierpark Grafik 0.5 n n
Tod ähneln 0 n a
Tod Beerdigung 3.25 n n
Traurigkeit bekommen 0.13 n v
überzeugen Mitschuld 0.5 v n
überzeugen zeigen 1.5 v v
Überzeugung übertreiben 0.63 n v
Überzeugung Zweifel 2.63 n n
Umfrage Erfolg 0.13 n n
Unternehmen Firma 3.63 n n
untersuchen Benedikt 0 v n
untersuchen suchen 2.5 v v
Untersuchungsausschuss aussagen 1.88 n v
Untersuchungsausschuss umfassen 0.38 n v
Van Vorschrift 0.25 n n
Vatikan ausgehen 0.13 n v
Vatikan Katholik 3.25 n n
veranstalten betreuen 1.38 v v
veranstalten dauern 0.75 v v
verantwortlich Amt 2.25 a n
verantwortlich zuständig 3.63 a a
vergangen damalig 3.25 a a
Vergangenheit alte 2 n a
Vergangenheit Deutschland 1 n n
verhindert Bayerisch 0 a a
verhindert Beihilfe 0.75 a n
verkaufen bezahlen 2.5 v v
verkaufen fahren 0.13 v v
Vernehmung bedrohen 0.75 n v
Vernehmung vernommen 3.63 n v
versäumen sagen 0.13 v v
versäumen überprüfen 0.13 v v
verschicken Post 3 v n
verschicken Rede 0.25 v n
versichern Auftritt 0.13 v n
versichern bedauern 0.5 v v
viel groß 2 a a
viel schreiben 0.38 a v
vorankommen Entwicklung 2.5 v n
vorankommen Grundpreis 0.25 v n
weit Bewerbung 0 a n
weit erklären 0.25 a v
weit nahe 3.13 a a
Welle Schaden 1 n n
Welle Surfer 3.13 n n
Widerspruch Analyse 1.13 n n
Widerspruch Gebiet 0 n n
Wien deutschsprachig 3 n a
Wirtschaftsprofessor Irrtum 0.38 n n
Wirtschaftsprofessor Professor 3.63 n n
Wirtschaftsuniversität Abteilung 1.75 n n
Wirtschaftsuniversität historisch 0.63 n a
Witz Joke 4 n n
Witz Kopf 1.13 n n
Zebra Stellenanzeige 0 n n
Zebra Tier 3.25 n n
Zielstrebigkeit ablehnen 0.25 n v
Zielstrebigkeit Erfolg 2.63 n n
Word1 Word2 Score
love sex 8.31
book paper 7.69
computer keyboard 8.38
computer internet 8.23
telephone communication 8.38
drug abuse 6.46
smart student 6.58
company stock 6.85
stock market 7.46
stock phone 1.54
stock CD 4.04
stock jaguar 1.54
stock egg 1.62
fertility egg 8.38
stock live 3.69
stock life 1.85
book library 8.77
bank money 8.69
professor cucumber 0.23
king cabbage 1.15
Jerusalem Israel 8.77
Jerusalem Palestinian 7.85
holy sex 1.46
Maradona football 4.92
tennis racket 8.69
Arafat peace 3.62
Arafat terror 5.92
law lawyer 9.23
movie star 7.46
movie popcorn 6.77
movie critic 6.08
movie theater 7.85
physics proton 6.38
space chemistry 3.77
alcohol chemistry 4.62
drink car 0.77
drink ear 0.38
drink mouth 6.38
baby mother 6.23
drink mother 1.31
tool implement 7.00
brother monk 5.31
crane implement 3.08
lad brother 5.62
journey car 5.62
monk oracle 4.31
cemetery woodland 2.15
coast hill 3.15
forest graveyard 2.00
shore woodland 3.00
monk slave 2.15
coast forest 2.92
lad wizard 1.85
chord smile 1.23
glass magician 1.15
noon string 0.46
rooster voyage 0.54
money wealth 8.38
money property 5.38
money possession 6.46
money bank 7.23
money deposit 7.46
money withdrawal 7.38
money laundering 6.54
money operation 3.00
tiger zoo 7.65
psychology anxiety 7.27
psychology fear 5.96
psychology depression 7.31
psychology clinic 7.46
psychology doctor 7.98
psychology Freud 8.46
psychology mind 8.46
psychology health 7.35
psychology cognition 7.50
planet constellation 7.08
planet galaxy 7.65
planet space 8.23
planet astronomer 7.23
precedent information 5.54
precedent cognition 4.15
precedent law 6.54
precedent collection 3.92
precedent group 2.38
cup coffee 7.65
cup article 1.85
cup drink 7.96
cup food 4.15
cup substance 3.69
cup liquid 6.82
energy secretary 0.92
secretary senate 3.92
energy laboratory 4.12
computer laboratory 4.58
weapon secret 4.73
FBI fingerprint 5.38
FBI investigation 8.15
investigation effort 5.50
Mars water 2.65
Mars scientist 4.31
news report 8.15
canyon landscape 7.62
image surface 4.04
discovery space 6.50
water seepage 6.15
sign recess 1.42
Wednesday news 1.96
computer news 4.08
territory surface 3.96
atmosphere landscape 3.58
president medal 3.38
war troops 7.88
record number 5.88
theater history 2.65
volunteer motto 1.85
prejudice recognition 2.73
decoration valor 6.88
century nation 1.46
delay racism 1.08
delay news 1.88
minister party 2.58
peace plan 3.69
minority peace 2.85
attempt peace 2.35
government crisis 4.42
deployment departure 7.81
deployment withdrawal 6.27
energy crisis 3.85
announcement effort 3.08
stroke hospital 5.88
disability death 5.15
victim emergency 6.77
treatment recovery 7.54
journal association 3.00
doctor liability 4.69
liability insurance 8.48
school center 5.08
reason hypertension 0.69
reason criterion 5.50
hundred percent 6.69
death row 5.46
death inmate 3.92
lawyer evidence 7.35
life term 5.35
word similarity 2.00
board recommendation 2.50
governor interview 1.31
OPEC country 1.92
peace atmosphere 2.31
peace insurance 0.69
territory kilometer 2.46
competition price 4.54
consumer confidence 4.08
consumer energy 4.50
problem airport 1.92
car flight 3.46
credit card 6.38
credit information 5.65
hotel reservation 7.59
grocery money 4.88
registration arrangement 5.12
arrangement accommodation 6.54
month hotel 0.31
arrival hotel 4.27
bed closet 2.33
closet clothes 7.69
situation conclusion 3.46
situation isolation 1.88
impartiality interest 2.65
direction combination 0.81
street children 1.54
listing proximity 1.96
listing category 6.29
production hike 1.00
benchmark index 4.46
media trading 1.15
media gain 1.31
dividend calculation 6.62
currency market 5.46
OPEC oil 7.52
oil stock 5.69
announcement production 2.38
announcement warning 6.15
profit warning 0.77
dollar profit 6.77
dollar loss 5.38
computer software 8.00
network hardware 7.73
equipment maker 3.62
luxury car 5.12
five month 1.08
report gain 3.00
investor earning 6.42
baseball season 5.31
game victory 6.54
game team 7.15
game series 4.62
game defeat 5.38
seven series 2.38
seafood sea 7.94
food preparation 5.46
video archive 3.69
start year 1.42
start match 2.08
game round 4.46
boxing round 6.54
fighting defeating 5.31
line insurance 1.15
day summer 3.54
summer drought 5.19
summer nature 4.62
day dawn 7.62
nature environment 8.85
environment ecology 8.23
nature man 6.69
soap opera 5.38
life lesson 5.69
focus life 4.46
production crew 5.38
television film 6.88
lover quarrel 5.69
viewer serial 3.04
possibility girl 2.46
population development 4.42
morality importance 4.46
morality marriage 4.77
gender equality 6.27
change attitude 5.54
family planning 5.69
opera industry 3.38
sugar approach 1.00
practice institution 3.31
ministry culture 4.35
problem challenge 7.81
size prominence 6.19
country citizen 6.15
planet people 5.85
development issue 4.58
experience music 4.54
music project 4.46
chance credibility 4.12
exhibit memorabilia 5.85
concert virtuoso 6.04
observation architecture 3.62
space world 5.85
preservation world 4.31
admission ticket 7.42
shower flood 6.19
weather forecast 7.88
disaster area 5.04
governor office 5.85
architecture century 3.31
\ No newline at end of file
Word1 Word2 Score
tiger cat 8.31
tiger tiger 10.00
plane car 5.85
train car 6.31
television radio 6.85
media radio 8.08
bread butter 7.54
cucumber potato 5.92
doctor nurse 8.15
professor doctor 5.31
student professor 6.54
smart student 6.58
smart stupid 5.92
stock phone 1.54
stock CD 4.04
stock jaguar 1.54
stock egg 1.62
stock live 3.69
stock life 1.85
wood forest 8.38
money cash 9.38
professor cucumber 0.23
king cabbage 1.15
king queen 8.46
king rook 5.92
bishop rabbi 8.23
holy sex 1.46
fuck sex 9.31
football basketball 7.08
football tennis 6.46
Arafat Jackson 2.77
physics chemistry 7.77
space chemistry 3.77
vodka gin 8.15
vodka brandy 7.85
drink car 0.77
drink ear 0.38
drink eat 6.61
drink mother 1.31
car automobile 9.54
gem jewel 9.31
journey voyage 9.54
boy lad 9.46
asylum madhouse 9.00
magician wizard 8.77
furnace stove 7.69
food fruit 8.15
bird cock 6.85
bird crane 8.31
crane implement 3.08
lad brother 5.62
monk oracle 4.31
cemetery woodland 2.15
food rooster 2.92
coast hill 3.15
forest graveyard 2.00
shore woodland 3.00
monk slave 2.15
coast forest 2.92
lad wizard 1.85
chord smile 1.23
glass magician 1.15
noon string 0.46
rooster voyage 0.54
money dollar 9.08
money cash 9.38
money currency 9.54
money operation 3.00
tiger jaguar 8.42
tiger feline 8.46
tiger carnivore 8.92
tiger mammal 8.81
tiger animal 9.06
tiger organism 6.77
tiger fauna 4.31
psychology psychiatry 8.35
psychology science 6.81
psychology discipline 6.23
planet star 8.08
planet moon 8.15
planet sun 8.58
precedent example 6.85
precedent information 5.54
precedent cognition 4.15
precedent collection 3.92
precedent group 2.38
precedent antecedent 6.69
cup tableware 7.54
cup article 1.85
cup artifact 3.54
cup object 6.62
cup entity 2.08
cup food 4.15
cup substance 3.69
jaguar cat 8.85
jaguar car 7.35
energy secretary 0.92
investigation effort 5.50
Mars water 2.65
image surface 4.04
sign recess 1.42
Wednesday news 1.96
mile kilometer 6.92
computer news 4.08
atmosphere landscape 3.58
president medal 3.38
skin eye 4.69
Japanese American 6.15
theater history 2.65
volunteer motto 1.85
prejudice recognition 2.73
century year 6.54
century nation 1.46
delay racism 1.08
delay news 1.88
peace plan 3.69
minority peace 2.85
attempt peace 2.35
deployment departure 7.81
announcement news 7.62
announcement effort 3.08
journal association 3.00
doctor personnel 5.73
school center 5.08
reason hypertension 0.69
Harvard Yale 8.77
hospital infrastructure 5.42
life death 6.96
life term 5.35
word similarity 2.00
board recommendation 2.50
governor interview 1.31
peace atmosphere 2.31
peace insurance 0.69
travel activity 4.85
consumer confidence 4.08
consumer energy 4.50
problem airport 1.92
car flight 3.46
month hotel 0.31
type kind 9.31
situation conclusion 3.46
situation isolation 1.88
direction combination 0.81
street place 6.08
street avenue 8.77
street block 7.85
street children 1.54
listing proximity 1.96
cell phone 8.54
production hike 1.00
benchmark index 4.46
media trading 1.15
media gain 1.31
dividend payment 8.38
calculation computation 9.38
announcement production 2.38
profit warning 0.77
profit loss 6.69
dollar yen 8.08
dollar buck 9.54
phone equipment 6.85
five month 1.08
report gain 3.00
liquid water 8.62
marathon sprint 5.69
seven series 2.38
seafood food 8.52
seafood lobster 8.60
lobster food 8.37
lobster wine 2.54
start year 1.42
start match 2.08
championship tournament 7.92
line insurance 1.15
man woman 8.38
man governor 6.00
murder manslaughter 7.65
opera performance 7.46
focus life 4.46
viewer serial 3.04
possibility girl 2.46
population development 4.42
morality importance 4.46
morality marriage 4.77
Mexico Brazil 6.19
opera industry 3.38
sugar approach 1.00
practice institution 3.31
ministry culture 4.35
development issue 4.58
experience music 4.54
music project 4.46
glass metal 4.58
aluminum metal 7.62
chance credibility 4.12
rock jazz 6.85
museum theater 6.00
observation architecture 3.62
shower thunderstorm 6.73
architecture century 3.31
\ No newline at end of file
Word1 Word2 Score
love sex 8.31
tiger cat 8.31
tiger tiger 10.00
book paper 7.69
computer keyboard 8.38
computer internet 8.23
plane car 5.85
train car 6.31
telephone communication 8.38
television radio 6.85
media radio 8.08
drug abuse 6.46
bread butter 7.54
cucumber potato 5.92
doctor nurse 8.15
professor doctor 5.31
student professor 6.54
smart student 6.58
smart stupid 5.92
company stock 6.85
stock market 7.46
stock phone 1.54
stock CD 4.04
stock jaguar 1.54
stock egg 1.62
fertility egg 8.38
stock live 3.69
stock life 1.85
book library 8.77
bank money 8.69
wood forest 8.38
money cash 9.38
professor cucumber 0.23
king cabbage 1.15
king queen 8.46
king rook 5.92
bishop rabbi 8.23
Jerusalem Israel 8.77
Jerusalem Palestinian 7.85
holy sex 1.46
fuck sex 9.31
Maradona football 4.92
football basketball 7.08
football tennis 6.46
tennis racket 8.69
Arafat peace 3.62
Arafat terror 5.92
Arafat Jackson 2.77
law lawyer 9.23
movie star 7.46
movie popcorn 6.77
movie critic 6.08
movie theater 7.85
physics proton 6.38
physics chemistry 7.77
space chemistry 3.77
alcohol chemistry 4.62
vodka gin 8.15
vodka brandy 7.85
drink car 0.77
drink ear 0.38
drink mouth 6.38
drink eat 6.61
baby mother 6.23
drink mother 1.31
car automobile 9.54
gem jewel 9.31
journey voyage 9.54
boy lad 9.46
asylum madhouse 9.00
magician wizard 8.77
furnace stove 7.69
food fruit 8.15
bird cock 6.85
bird crane 8.31
tool implement 7.00
brother monk 5.31
crane implement 3.08
lad brother 5.62
journey car 5.62
monk oracle 4.31
cemetery woodland 2.15
food rooster 2.92
coast hill 3.15
forest graveyard 2.00
shore woodland 3.00
monk slave 2.15
coast forest 2.92
lad wizard 1.85
chord smile 1.23
glass magician 1.15
noon string 0.46
rooster voyage 0.54
money dollar 9.08
money cash 9.38
money currency 9.54
money wealth 8.38
money property 5.38
money possession 6.46
money bank 7.23
money deposit 7.46
money withdrawal 7.38
money laundering 6.54
money operation 3.00
tiger jaguar 8.42
tiger feline 8.46
tiger carnivore 8.92
tiger mammal 8.81
tiger animal 9.06
tiger organism 6.77
tiger fauna 4.31
tiger zoo 7.65
psychology psychiatry 8.35
psychology anxiety 7.27
psychology fear 5.96
psychology depression 7.31
psychology clinic 7.46
psychology doctor 7.98
psychology Freud 8.46
psychology mind 8.46
psychology health 7.35
psychology science 6.81
psychology discipline 6.23
psychology cognition 7.50
planet star 8.08
planet constellation 7.08
planet moon 8.15
planet sun 8.58
planet galaxy 7.65
planet space 8.23
planet astronomer 7.23
precedent example 6.85
precedent information 5.54
precedent cognition 4.15
precedent law 6.54
precedent collection 3.92
precedent group 2.38
precedent antecedent 6.69
cup coffee 7.65
cup tableware 7.54
cup article 1.85
cup artifact 3.54
cup object 6.62
cup entity 2.08
cup drink 7.96
cup food 4.15
cup substance 3.69
cup liquid 6.82
jaguar cat 8.85
jaguar car 7.35
energy secretary 0.92
secretary senate 3.92
energy laboratory 4.12
computer laboratory 4.58
weapon secret 4.73
FBI fingerprint 5.38
FBI investigation 8.15
investigation effort 5.50
Mars water 2.65
Mars scientist 4.31
news report 8.15
canyon landscape 7.62
image surface 4.04
discovery space 6.50
water seepage 6.15
sign recess 1.42
Wednesday news 1.96
mile kilometer 6.92
computer news 4.08
territory surface 3.96
atmosphere landscape 3.58
president medal 3.38
war troops 7.88
record number 5.88
skin eye 4.69
Japanese American 6.15
theater history 2.65
volunteer motto 1.85
prejudice recognition 2.73
decoration valor 6.88
century year 6.54
century nation 1.46
delay racism 1.08
delay news 1.88
minister party 2.58
peace plan 3.69
minority peace 2.85
attempt peace 2.35
government crisis 4.42
deployment departure 7.81
deployment withdrawal 6.27
energy crisis 3.85
announcement news 7.62
announcement effort 3.08
stroke hospital 5.88
disability death 5.15
victim emergency 6.77
treatment recovery 7.54
journal association 3.00
doctor personnel 5.73
doctor liability 4.69
liability insurance 8.48
school center 5.08
reason hypertension 0.69
reason criterion 5.50
hundred percent 6.69
Harvard Yale 8.77
hospital infrastructure 5.42
death row 5.46
death inmate 3.92
lawyer evidence 7.35
life death 6.96
life term 5.35
word similarity 2.00
board recommendation 2.50
governor interview 1.31
OPEC country 1.92
peace atmosphere 2.31
peace insurance 0.69
territory kilometer 2.46
travel activity 4.85
competition price 4.54
consumer confidence 4.08
consumer energy 4.50
problem airport 1.92
car flight 3.46
credit card 6.38
credit information 5.65
hotel reservation 7.59
grocery money 4.88
registration arrangement 5.12
arrangement accommodation 6.54
month hotel 0.31
type kind 9.31
arrival hotel 4.27
bed closet 2.33
closet clothes 7.69
situation conclusion 3.46
situation isolation 1.88
impartiality interest 2.65
direction combination 0.81
street place 6.08
street avenue 8.77
street block 7.85
street children 1.54
listing proximity 1.96
listing category 6.29
cell phone 8.54
production hike 1.00
benchmark index 4.46
media trading 1.15
media gain 1.31
dividend payment 8.38
dividend calculation 6.62
calculation computation 9.38
currency market 5.46
OPEC oil 7.52
oil stock 5.69
announcement production 2.38
announcement warning 6.15
profit warning 0.77
profit loss 6.69
dollar yen 8.08
dollar buck 9.54
dollar profit 6.77
dollar loss 5.38
computer software 8.00
network hardware 7.73
phone equipment 6.85
equipment maker 3.62
luxury car 5.12
five month 1.08
report gain 3.00
investor earning 6.42
liquid water 8.62
baseball season 5.31
game victory 6.54
game team 7.15
marathon sprint 5.69
game series 4.62
game defeat 5.38
seven series 2.38
seafood sea 7.94
seafood food 8.52
seafood lobster 8.60
lobster food 8.37
lobster wine 2.54
food preparation 5.46
video archive 3.69
start year 1.42
start match 2.08
game round 4.46
boxing round 6.54
championship tournament 7.92
fighting defeating 5.31
line insurance 1.15
day summer 3.54
summer drought 5.19
summer nature 4.62
day dawn 7.62
nature environment 8.85
environment ecology 8.23
nature man 6.69
man woman 8.38
man governor 6.00
murder manslaughter 7.65
soap opera 5.38
opera performance 7.46
life lesson 5.69
focus life 4.46
production crew 5.38
television film 6.88
lover quarrel 5.69
viewer serial 3.04
possibility girl 2.46
population development 4.42
morality importance 4.46
morality marriage 4.77
Mexico Brazil 6.19
gender equality 6.27
change attitude 5.54
family planning 5.69
opera industry 3.38
sugar approach 1.00
practice institution 3.31
ministry culture 4.35
problem challenge 7.81
size prominence 6.19
country citizen 6.15
planet people 5.85
development issue 4.58
experience music 4.54
music project 4.46
glass metal 4.58
aluminum metal 7.62
chance credibility 4.12
exhibit memorabilia 5.85
concert virtuoso 6.04
rock jazz 6.85
museum theater 6.00
observation architecture 3.62
space world 5.85
preservation world 4.31
admission ticket 7.42
shower thunderstorm 6.73
shower flood 6.19
weather forecast 7.88
disaster area 5.04
governor office 5.85
architecture century 3.31
\ No newline at end of file
Word1 Word2 Score
Liebe Sex 8.46
Buch Papier 7.08
Computer Tastatur 8.00
Computer Internet 8.08
Telefon Kommunikation 8.38
Drogen Mißbrauch 6.46
klug Student 4.85
Unternehmen Aktie 6.54
Aktie Börse 8.85
Vorrat Telefon 0.31
Vorrat CD 0.54
Vorrat Jaguar 0.23
Vorrat Ei 2.15
Fruchtbarkeit Ei 7.92
Aktie Live 1.08
Aktie Leben 0.62
Buch Bibliothek 8.31
Bank Geld 8.15
Professor Gurke 0.15
König Kohl 0.23
Jerusalem Israel 8.85
Jerusalem Palestinensisch 6.85
Heilig Sex 0.69
Maradona Fußball 8.00
Tennis Schläger 7.08
Arafat Frieden 2.46
Arafat Terror 5.23
Gesetz Anwalt 8.38
Film Star 7.62
Film Popcorn 6.08
Film Kritik 5.85
Kino Theater 6.85
Physik Proton 7.00
Weltall Chemie 3.31
Alkohol Chemie 5.08
Drink Auto 1.85
Trinken Ohren 0.62
Trinken Mund 6.46
Baby Mutter 7.85
Säugen Mutter 7.69
Werkzeug Arbeitsgerät 8.38
Bruder Mönch 5.92
Kran Arbeitsgerät 6.08
Bursche Bruder 4.23
Fahrt Auto 6.62
Mönch Orakel 1.38
Friedhof Waldgebiet 1.92
Küste Hügel 2.69
Wald Friedhof 3.31
Ufer Waldgebiet 2.31
Mönch Sklave 1.08
Küste Wald 1.77
Bursche Zauberer 0.77
Akkord Lächeln 0.31
Glas Magier 1.69
Mittag Faden 0.15
Hahn Reise 0.31
Geld Reichtum 8.19
Geld Eigentum 6.62
Geld Besitz 6.92
Geld Bank 8.31
Geld Pfand 5.13
Geld Einzahlung 6.23
Geld Abheben 6.54
Geld Wäsche 3.62
Tiger Zoo 5.91
Psychologie Beklemmung 4.35
Psychologie Angst 4.92
Psychologie Depression 6.77
Psychologie Klinik 6.17
Psychologie Arzt 5.85
Psychologie Freud 7.00
Psychologie Seele 5.88
Psychologie Gesundheit 5.11
Psychologie Erkenntnis 4.92
Planet Konstellation 6.23
Planet Galaxie 7.08
Planet Weltraum 7.08
Planet Astronom 6.38
Basis Information 3.32
Voraussetzung Erkenntnis 3.15
Präzedensfall Gesetz 5.62
Beispielhaft Sammlung 1.92
Vorbildlich Gruppe 2.19
Tasse Kaffee 7.21
Tasse Gegenstand 6.08
Tasse Trinken 7.62
Tasse Essen 1.77
Tasse Substanz 1.69
Tasse Flüssigkeit 5.47
Energie Minister 4.15
Minister Senat 5.96
Energie Labor 3.23
Computer Labor 4.31
Waffe Geheimnis 1.85
Polizei Fingerabdruck 6.23
Polizei Ermittlung 7.27
Untersuchung Aufwand 4.15
Mars Wasser 2.77
Mars Wissenschaftler 5.54
Nachrichten Bericht 7.85
Schlucht Landschaft 6.54
Bild Oberfläche 3.38
Entdeckung Weltall 4.77
Wasser Leck 5.81
Zeichen Kerbe 3.92
Mittwoch Nachrichten 1.38
Computer Nachrichten 4.23
Gebiet Oberfläche 3.77
Atmosphäre Landschaft 2.50
Präsident Orden 2.77
Krieg Truppen 6.81
Rekord Nummer 2.77
Theater Geschichte 3.85
Freiwilliger Motto 0.77
Vorurteil Anerkennung 3.46
Auszeichnung Tapferkeit 5.92
Jahrhundert Nation 1.54
Verzögerung Rassismus 1.31
Verzögerung Nachrichten 1.08
Minister Partei 7.38
Frieden Plan 3.85
Minderheit Frieden 2.23
Versuch Frieden 3.46
Regierung Krise 5.65
Aufmarsch Abzug 6.27
Aufmarsch Rückzug 6.81
Energie Krise 4.77
Ankündigung Aufwand 1.08
Schlaganfall Krankenhaus 6.88
Behinderung Tod 2.42
Opfer Notfall 6.69
Behandlung Erholung 5.46
Zeitschrift Verein 1.77
Arzt Verantwortung 6.65
Haftung Versicherung 7.62
Schule Zentrum 4.00
Ursache Bluthochdruck 3.65
Ursache Kriterium 3.69
Hundert Prozent 6.92
Tod Trakt 2.46
Tod Insasse 2.38
Rechtsanwalt Beweis 6.04
Leben Dauer 6.42
Wort Ähnlichkeit 2.46
Gremium Empfehlung 3.65
Direktor Interview 2.46
OPEC Staat 3.92
Frieden Stimmung 4.46
Frieden Versicherung 2.15
Gelände Kilometer 3.46
Wettbewerb Preis 7.73
Konsument Vertrauen 3.85
Konsument Energie 3.69
Problem Flughafen 2.23
Auto Flug 3.77
Kredit Karte 6.31
Vertrauen Information 4.77
Hotel Reservierung 6.81
Lebensmittel Geld 4.88
Registrierung Abmachung 2.69
Vereinbarung Unterkunft 2.00
Monat Hotel 0.69
Ankunft Hotel 4.54
Bett Schrank 6.15
Schrank Kleider 7.50
Lage Schlussfolgerung 3.69
Situation Isolation 2.15
Unparteilichkeit Interesse 2.50
Richtung Verbindung 3.65
Straße Kinder 3.73
Aufzählung Nähe 0.92
Liste Kategorie 5.85
Herstellung Wanderung 0.69
Richtwert Kennziffer 4.92
Medien Handel 2.87
Medien Vorteil 1.81
Gewinnanteil Kalkulation 6.15
Währung Markt 6.03
OPEC Öl 7.65
Öl Aktie 5.14
Ankündigung Produktion 1.65
Ankündigung Warnung 6.06
Gewinn Warnung 2.85
Dollar Gewinn 5.25
Dollar Verlust 5.27
Computer Software 8.35
Netzwerk Hardware 6.88
Zubehör Hersteller 4.43
Luxus Auto 5.14
Fünf Monat 1.33
Bericht Zuwachs 2.02
Investor Einkommen 4.05
Baseball Saison 4.98
Spiel Sieg 7.08
Spiel Mannschaft 6.88
Spiel Serie 4.85
Spiel Niederlage 6.77
Sieben Reihe 2.41
Meeresfrüchte Meer 7.32
Essen Vorbereitung 5.58
Video Archiv 5.06
Beginn Jahr 4.70
Beginn Partie 4.22
Spiel Runde 6.33
Boxen Runde 7.35
Kämpfen Besiegen 7.41
Grundsatz Versicherung 2.51
Tag Sommer 3.33
Sommer Dürre 6.04
Sommer Natur 5.37
Tag Dämmerung 5.97
Natur Umwelt 8.00
Umwelt Nachhaltigkeit 6.54
Natur Mensch 6.31
Seife Oper 2.85
Leben Lektion 4.54
Fokus Leben 2.62
Herstellung Belegschaft 3.23
Fernsehen Film 7.31
Liebhaber Streit 4.08
Zuschauer Serie 5.38
Möglichkeit Mädchen 1.65
Bevölkerung Entwicklung 4.27
Moral Wichtigkeit 4.65
Moral Heirat 2.81
Geschlecht Gleichheit 3.81
Änderung Einstellung 4.15
Familie Planung 5.62
Oper Industrie 0.85
Zucker Annäherung 1.46
Praxis Institution 4.27
Ministerium Kultur 4.38
Problem Herausforderung 6.08
Größe Prominenz 5.46
Staat Bürger 6.77
Planet Menschen 5.62
Entwicklung Ausgabe 3.15
Erfahrung Musik 1.08
Musik Projekt 4.04
Möglichkeit Glaubwürdigkeit 2.69
Ausstellungsstück Erinnerungsstück 4.38
Konzert virtuos 4.46
Betrachtung Architektur 4.38
Weltraum Erde 6.46
Erhaltung Welt 4.31
Einlass Eintritt 8.08
Regen Flut 7.27
Wetter Vorhersage 6.46
Katastrophe Gebiet 4.27
Präsident Büro 3.42
Architektur Jahrhundert 3.08
\ No newline at end of file
Word1 Word2 Score
Tiger Katze 7.92
Tiger Tiger 10.00
Flugzeug Auto 4.92
Zug Auto 5.54
Fernseher Radio 5.77
Medien Radio 8.15
Brot Butter 5.62
Gurke Kartoffel 4.92
Arzt Krankenschwester 6.69
Professor Doktor 6.77
Student Professor 5.69
klug Student 4.85
klug dumm 5.00
Vorrat Telefon 0.31
Vorrat CD 0.54
Vorrat Jaguar 0.23
Vorrat Ei 2.15
Aktie Live 1.08
Aktie Leben 0.62
Holz Wald 8.54
Geld Bargeld 9.69
Professor Gurke 0.15
König Kohl 0.23
König Königin 10.00
König Turm 5.15
Bischoff Rabbi 7.00
Heilig Sex 0.69
Ficken Sex 9.15
Fußball Basketball 5.38
Fußball Tennis 4.69
Arafat Jackson 0.69
Physik Chemie 7.54
Weltall Chemie 3.31
Wodka Gin 7.92
Wodka Brandy 8.22
Drink Auto 1.85
Trinken Ohren 0.62
Trinken Essen 7.23
Säugen Mutter 7.69
Auto Fahrzeug 9.19
Edelstein Juwel 9.27
Ausflug Reise 8.23
Junge Bursche 9.27
Irrenanstalt Tollhaus 8.23
Magier Zauberer 9.65
Ofen Herd 8.81
Essen Frucht 6.77
Vogel Hahn 6.08
Vogel Kranich 7.46
Kran Arbeitsgerät 6.08
Bursche Bruder 4.23
Mönch Orakel 1.38
Friedhof Waldgebiet 1.92
Essen Hahn 3.46
Küste Hügel 2.69
Wald Friedhof 3.31
Ufer Waldgebiet 2.31
Mönch Sklave 1.08
Küste Wald 1.77
Bursche Zauberer 0.77
Akkord Lächeln 0.31
Glas Magier 1.69
Mittag Faden 0.15
Hahn Reise 0.31
Geld Dollar 7.92
Geld Bargeld 9.19
Geld Währung 8.12
Geld Wäsche 3.62
Tiger Jaguar 6.00
Tiger Katze 6.92
Tiger Raubtier 8.00
Tiger Säugetier 6.58
Tiger Tier 7.85
Tiger Organismus 3.59
Tiger Fauna 3.69
Psychologie Psychiatrie 6.85
Psychologie Wissenschaft 5.96
Psychologie Disziplin 4.77
Planet Stern 7.23
Planet Mond 7.08
Planet Sonne 7.08
Präzedenz Beispiel 6.83
Basis Information 3.32
Voraussetzung Erkenntnis 3.15
Beispielhaft Sammlung 1.92
Vorbildlich Gruppe 2.19
Vorangehend Vorausgehend 8.04
Tasse Geschirr 8.00
Tasse Gegenstand 6.08
Tasse Artefakt 2.00
Tasse Objekt 5.69
Tasse Ding 5.08
Tasse Essen 1.77
Tasse Substanz 1.69
Jaguar Katze 6.66
Jaguar Auto 7.55
Energie Minister 4.15
Untersuchung Aufwand 4.15
Mars Wasser 2.77
Bild Oberfläche 3.38
Zeichen Kerbe 3.92
Mittwoch Nachrichten 1.38
Meile Kilometer 7.62
Computer Nachrichten 4.23
Atmosphäre Landschaft 2.50
Präsident Orden 2.77
Haut Augen 4.12
Japaner Amerikaner 5.73
Theater Geschichte 3.85
Freiwilliger Motto 0.77
Vorurteil Anerkennung 3.46
Jahrhundert Jahr 6.85
Jahrhundert Nation 1.54
Verzögerung Rassismus 1.31
Verzögerung Nachrichten 1.08
Frieden Plan 3.85
Minderheit Frieden 2.23
Versuch Frieden 3.46
Aufmarsch Abzug 6.27
Ankündigung Nachrichten 6.31
Ankündigung Aufwand 1.08
Zeitschrift Verein 1.77
Arzt Personal 4.46
Schule Zentrum 4.00
Ursache Bluthochdruck 3.65
Harvard Yale 7.85
Krankenhaus Infrastruktur 5.00
Leben Tod 8.69
Leben Dauer 6.42
Wort Ähnlichkeit 2.46
Gremium Empfehlung 3.65
Direktor Interview 2.46
Frieden Stimmung 4.46
Frieden Versicherung 2.15
Reise Aktivität 6.31
Konsument Vertrauen 3.85
Konsument Energie 3.69
Problem Flughafen 2.23
Auto Flug 3.77
Monat Hotel 0.69
Art Sorte 8.81
Lage Schlussfolgerung 3.69
Situation Isolation 2.15
Richtung Verbindung 3.65
Straße Platz 5.35
Straße Allee 7.73
Straße Häuserblock 5.50
Straße Kinder 3.73
Aufzählung Nähe 0.92
Zelle Telefon 6.38
Herstellung Wanderung 0.69
Richtwert Kennziffer 4.92
Medien Handel 2.87
Medien Vorteil 1.81
Gewinnanteil Auszahlung 7.32
Kalkulation Berechnung 9.54
Ankündigung Produktion 1.65
Gewinn Warnung 2.85
Gewinn Verlust 7.85
Dollar Yen 7.31
Dollar Kohle 5.58
Telefon Zubehör 4.42
Fünf Monat 1.33
Bericht Zuwachs 2.02
Flüssigkeit Wasser 8.62
Marathon Sprint 7.67
Sieben Reihe 2.41
Meeresfrüchte Essen 7.23
Meeresfrüchte Hummer 6.81
Hummer Essen 6.78
Hummer Wein 4.15
Beginn Jahr 4.70
Beginn Partie 4.22
Meisterschaft Turnier 8.05
Grundsatz Versicherung 2.51
Mann Frau 8.69
Mann Präsident 5.46
Mord Totschlag 8.62
Oper Aufführung 6.38
Fokus Leben 2.62
Zuschauer Serie 5.38
Möglichkeit Mädchen 1.65
Bevölkerung Entwicklung 4.27
Moral Wichtigkeit 4.65
Moral Heirat 2.81
Mexiko Brasil 5.23
Oper Industrie 0.85
Zucker Annäherung 1.46
Praxis Institution 4.27
Ministerium Kultur 4.38
Entwicklung Ausgabe 3.15
Erfahrung Musik 1.08
Musik Projekt 4.04
Glas Metal 3.92
Aluminium Metal 7.81
Möglichkeit Glaubwürdigkeit 2.69
Rock Jazz 6.19
Museum Theater 5.42
Betrachtung Architektur 4.38
Regen Gewitter 7.85
Architektur Jahrhundert 3.08
\ No newline at end of file